OPENSM

User & Developer Guide

Robotics control framework and 3D dynamic simulation tool

Prepared by
Dr. David Jung

Version 0.4.1

Copyright 2003-2004 Oak Ridge National Laboratory
Licensed under the GNU Free Documentation License

Last modified August 11, 2004

Contents

LS g U T o [4
S 4101 = o R 5
1.1 APPliCatiON PrOQramS......ccccueeiteeeiiecieeereeesteeeteeebeesree e beeesbesesbeesseeeseeeneeenreeans 5
R Y= 1LY < o 2 6

1.1.2 POSCONLION.......ectieieteesiee et ctee sttt et e e e e e e sre e st e e sbeaenneessaeenreesnnaens 7

L2 FIEFOIMEALS........ciiiiiii 8
O N o DY I o1 1 SRS 8

2 O g 11 YRR 9

1.2.3 ManipUlEor fIlES.......ccueeiiieiie et 9

I e =) 1 I = 10

Y (0] o0 B 1 =S 11

1.2.6 ENVIFONMENE FIlES...cciiieeeeee e e 12

A 10T I 1 1= 14

2 Inverse Kinematics On Redundant systems (IKOR).......cccoveviie v 15
AN o]0 [Tor= (1o gl ol (0o = 1S TSR 15
N R R 10T (== (01 15

N B | (0 (== A VA=YV < S 16

2.2 Specifying Off-liNE@TESE CASES......vvv i e 17

A N L O = B = 1= 17

|| Developer GUIE..........cceviiiee e 20
1 OPENSIM ATCNITECLUNE.....eeeeeee et e r e ere e e 20
A IV (o 23
pZa8 I 1 011 (0o (1 Tox 1 o 1HR 23
2.1.1 Controllers, Controllables and ControlInterfaces.........ccccoeeeeeeeecvvvvneeen. 25

2.1.2 A ControlInterface for our robot's manipulaor..............ccceeeeeiveeveenne. 27

2.1.3 Instantiating ajoint position cController...........cccocvveececce e 29

2.2 TheDBSE MOUUIE..........eeee et s e e s e b e e nbee s 30
A N = T S T ol Y o= SRS 30

2.2.2 COMIMON TYPBS.....eeeeiiteieetteeesieee e st e s s sibe e e stee s s sbe e s sbe e e s asseeesnnseessnneenans 31
2.2.3Debugging @idS.........cccoeeiiiiiiie e 36

2.2.4 Platform abStraCtionS.........c..eeeecvieeiccieie et e evaee et s e sareeeeans 36

2.2.5 Seridization and EXtErNaliZation............coccvuveeeeeiiecieveiee e 36

2.2.6 ULHITY ClaSSES......ccieiieeie ettt 37

2.3 Creating asSimple SIMUIBETON.........c.ooiiiieee e 37
2.3.L SBHUP. ..ttt bbbttt h e b ne e e 42
2.3.2Describing @RODOL.........cccviiiiieiee e 42
2.3.3 VIBWES SELUP......eeeiueieeieeiieeie et ettt e st ste e bbb e e e nee st et e s e e nae e 44
2.3 4 ThE MAIN TO0P. ... ittt e 45

2.4 Creating a simulation from specification files...........ccoeiiririeienineceee 45

I U 1o [P S T 50

3.1 INVErSE KINEBMELICS.......veeueeeeeieeieeste ettt sb e s r s 50
3.1.1UsSINg IKORCONLIOHE.......c.veeiieecieeciie et 50
3.1.2 The Full-Space Parameterization approach.............ccoceeeeevneeninnennens 52

3.2 0DStACI€ AVOIGANCE........c.eeieiieeeeeieie ettt e 54

A REFEIBINCE. ...ttt e et r e e reens 55
N o o1 g Lo | GRS 56
1 BUIld & INSEAIALION.......eiiiie e s r e e 56

100 0o SRR 56

2 CodiNg CONVENTION NOLES......cceeiuieiieieeieeeeeeeste e esteeseesreessaesseesseesseesreesseesseesseesseenes 56
2.1 COING SEYI@......eieiieeeee ettt n e 56
2.2 FHIBS. e et ettt bt nen 58
3 GNU Free Documentation LICENSE.........cccviriiniriniiiine s 59

4 DOCUMENT HISLOIY ...ttt bbbt sb e ne s 66

| User Guide

I ntroduction

OpenSim is primarily a programming library and set of tools for the robotics researcher to develop robot
control code that can be either executed on robotic hardware or used to control real-time or off-line robot
simulations.

The target user is the 'average' robotics researcher who needs to generate robotic control code to
conduct experiments and test ideas — in so far as an 'average' robotics researcher can meaningfully be
defined. Robatics research is conducted by practitioners from an unusually broad set of disciplines with
diverse backgrounds—ranging from engineers (e.g. mechanical, control, electrical/electronic) through
scientists from computer science, biology (biomechanics, neuroscience, cognitive science etc.) al the
way to immunologistsl However, the vast mgjority are currently from computer science, computer
engineering and related engineering backgrounds. Consequently, use of the library as a programming
framework and some of its tools assumes moderate competence in C++ object-oriented programming.
However, the distribution includes some command-line and graphical tools that may be accessible by
non-programmers.

The OpenSim system consists of thousands of classes and severa programs which can be
categorized roughly as follows:

« Platform support — classes that provide abstraction over low-level operating-system and other
platform resources; such as files, timers etc.—to enhance portability of code over desktop and
embedded systems.

+ Raobot control framework® — these classes provide an abstraction that is intended to be useful for
creating robot control software, without imposing any particular paradigm or methodology on
the designer.

+ Robot control components — these are classes implemented within the framework that provide
some common control components to use as peers with the developer's own code (if desired).
For example, aPID controller.

« Smulation system — this is a library of components that can be optionally used to create 3D
dynamic or static simulations of robots (fixed or mobile, single or multiple robot systems in
various environments).

+ Tools — a set of programs that utilize the other libraries that aid in development, visualization
and debugging. Some of these could possibly be used by non-programmers. For example, the

1The term framework in this context refers to an object-oriented software framework—a standard, generic software foundation that
provides a set of classes that support solving domain-specific problems in a vertical application domain; using inheritance and
delegation to extend the framework. See “How to make Software Reuse Work for You”, by Doug Schmidt, C++ Report, January
1999.

viewenv program reads a description of an environment containing robots, simulates them and
provides 3D visualization of the run.

This part of the manual documents the tools and how to invoke and use them. For atutorial introduction
and reference to the programmatic framework and component AP, refer to the the developer guide—part
Il of the manual.

1 Simulation

1.1 Application programs

The OpenSim distribution contains a number of command-line and graphical applications for running
simulations.

« viewenv — (view environment) is a 3D graphical application that can read in environment
specifications and simulate them statically or dynamically. It also alows querying robots for
supported control interfaces and for some standard interfaces provides graphical controls (for
example, to control joint angles, or run an inverse-kinematics controller to control end-effector
positions).

« poscontrol — (position control) is a 3D graphical application that can read in environment
specifications and simulate them dynamically. It has user controls for manipulating the positions of
robot variables directly?.

2The functionality of poscontrol has been mostly subsumed by the viewenv program. Hence, it may be removed in future.

1.1.1 viewenv

M Open Simulator (OpenSim) 0.4.4 - view environment - Simulation =[] *

bt Open Simulator (OpenSim) 0.4.4 - view environment - Control - | 0%

Simulation Realized Interfaces

Framerate: 32
SurgicalRobot(SurgeonAm1) ORF Base(NurseArm1)
Sim speed: 0.05 -manipulatorvelocityl -manipulatorl
Stepsize: 0.007 =(__} :'T\— Qutputs
Joints | End-Effector jointForce0; 0,0 =

Environment
[[] Orientation Control [] Lock Target|

jointForcel: 0.0 =

‘OhjEEI |
jointForcez: 0.0 =
= ORF Base =
[l . 00~
e X |0.37727 2{|| tointForces;
intForced: 0.0 =
eArm1 1|
¥ [o0mm3 5 o
NurseArm2 1| | jointForceS:
~ SurgicalRobot z[0.32507 : jointForced:; 0.0 =
= SurgicalPlatform - jointForce7: 0.0 =
SurgeonArml Roll | 1.57 []|| jointForces: 0.0=
SurgeanArm2 N ||| jointForces: 0.0
Pichj-046 [o|l] joimForceln: 0.0
: 0.0¢
e o.00 JolntForcell

z Inputs

JointPosition0: 0

Controller Parameters ||| jointPosition1: 4,28497e+06
Avallanaitteriices Obst Danger dist: |0.080 % ||| jointPosttion2: 0.068
Name Type JaintPosition3: 0.106
manipulatorl _lointForceControl Trajectory following jointPositiond: 0.1
manipulatorVelocityl JointVelocityControl File: | - - 1 JointPosition5: o
manipulatorProximityl LinkProximitySensors jointPosition6: 0.086
manipulatorToolGripl ~ ToolGripContral JointPaosition7: 0
E IZ‘ jeintPosition8: 1]
JointPositiond: 0.033

JointPosition10: 4.29497e+06
jointPositionl1: 0

0K

Figure 1 - |labeled viewenv screenshot

The viewenv program is for visualizing and simulating virtual environments as specified in environment
specification files (XML — see section 1.2.6 Environment files). It isinvoked viathe command-line with
the following usage (where '[...]' denotes optional parameters and ‘| denotes or):

viewenv [-env <env_spec file>] [-static] [-debug | -nodebug] [-debugoutput |
-nodebugoutput] [-debuggfx | -nodebuggfx]

The full path or relative path from the resource directory of the environment specification file is supplied
with the - env option. Once the environment has been loaded it will be ssmulated dynamically (i.e. with
Newtonian physics, approximate Coulomb friction and earth gravity) unless the optional -static
switch is specified. Various amounts of debugging information can be output to the terminal by using the
-debugoutput switch (or disabled with -nodebugoutput). Also, graphical aids for debugging
may be displayed by using -debuggfx. The -debug switch enables both debug output and debug
graphics. What is actually output and displayed depends on the implementation of the components being
used. For example, the simulated manipulator implementation may display cylindrical proximity sensor
range zones when simulating the manipulator link proximity sensors (if any are in use).

Here is an example invocation:

viewenv -env defaultenv.xml

This will create an environment containing a single fixed platform manipulator (called Titanll) and a
stack of boxes (obstacles). Two windows are opened, a visualization window that shows a 3D view of
the environment and a control window. At the top left of the control window in the 'simulation’ section
are shown various statistics about the running simulation, such as the rate at which frames are being
rendered (in Hz), the simulation speed relative to real-time (e.g. 1.0 isreal-time, 0.5 is half asfast as real-
time), and the current simulation step-size (in seconds).

The section labeled 1 in the figure, is a representation of the items that are present in the
environment. Each robot is listed along with other items, such as obstacles. The robot entries can be
expanded by selecting the expand arrow to their left to show any component parts, such as the platform
and any manipulators attached to it. The section labeled 2 lists the avaliable interfaces for controlling the
selected robot. Although interfaces are actually associated with a robot, not with its component parts, to
simplify the interface, viewenv filters the interfaces listed so that only manipulator specific interfaces are
listed when a manipulator object is currently selected in the environment and only platform or robot
specific interfaces are listed with the robot is selected.

To actually use a particular interface to control the running simulation, it must be realized. The
section labeled 3 in the figure is where the graphical controls associated with realized interfaces are
displayed. By default only asingle panel is available, but more can be added to the right of the window
by clicking the 'New Panel' button. To realize an interface, select it from the ‘available interfaces list and
press the 'Realize selected' button at the bottom of the panel in which you want the controls displayed.

Multiple interfaces may be realized in a single panel, in which case they can be selected via the
labeled tabs a the panel's top. They are labeled <robot_name>(<component_name>)-
<interface name>. For example, Surgical Robot(SurgeonArml)-manipulatorVelocityl. What is actually
displayed in the control panel depends on the type of the interface that is realized. For some specific
interface types special controls are provided. If the interface type is unknown (for example, because
you've implemented a ControlInterface in your own robot code), a generic control panel will be
displayed that is constructed by querying the interface for the number and names of any inputs and
outputs it provides. For example, in the figure the manipulatorvVelocityl interface was realized,
which has the type JointVelocityControl. Thisinterface type has a special control panel which
has two tabs. One alows control of the joint positions and one (the one shown selected) provides control
of the end-effector position and orientation. This is achieved by the control panel through instantiating
controllers—a PID controller and an inverse kinematics controller, respectively.

1.1.2 poscontrol

This application is currently undocumented and may be deprecated in future.

1.2 File Formats

Most input and output files are XML documents. If you are familiar with the XML format, you may skip
the next section. In the sections to follow which detail each particular file format, the description will
document the top-level element associated with that type of XML file. Often, these elements can be
embedded directly into other files where needed; or referred to indirectly via a 1ink attribute. Each
element description will detail the element's attributes and their values, the possible element content and
which elements can be nested within it.

1.2.1 An XML primer

The eXtensible Markup Language (XML) is an extensible format for specifying information in a
structured and portable way. XML files are typicaly just text files. Specifically they are Unicode text
files, commonly in the Unicode UTF-8 encoding, of which part of ASCII is a subset. Consequently,
typical XML filesin English look like straight ASCII text files. Here is an example XML file.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ikortest name="nhtest">
<environment link="nhenv.xml"/>
<testrobot>NonHolonomicRobot, NHTestArm</testrobot>

<test name="testl">
<initialconfig> 0 -1 0 40 40 40 40 40 40 40 40</initialconfig>
<jointweights> 1 11 1 1 1 1 1 1 1 1</jointweights>
<path frame="eebase" timeinterval="0:1:0.005"

link="xback_path.xml"/>
<golution solnmethod="fullspace" optmethod="lagrangian"
criteria="leastnorm" orientationcontrol="false"/>
<constraints>
<jointlimit/>

</constraints>

</test>

</ikortest>

Example1.2.1 - Smple XML file

Inthis case, it isan IKOR test specification (detailed in section 2.2). All XML files start with
<?xml .. ?>, however, well not concern ourselves with this here.

Notice that the file is comprised of a nested set of named elements, introduced via a start tag (e.g.
<constraints>) and terminated with an end tag (e.g. </constraints>). The names of the
elements, their meaning and which elements may be nested within which others, is completely
application defined. As a shorthand, elements that would be empty can be written like the
<jointlimit/> element above-whichisshort for <jointlimit></jointlimit>.

Elements can also have attributes. These are specified inside the start tag, such as the test
element above, which has a name attribute with value test1. The attribute value must be quoted. The
order of attributes is not important.

Although in general white space (spaces, tabs, newlines etc.) can be important in XML, it is mostly
ignored except within some special elements. In the example above, the space a the beginning of the
lines is ignored; as is the space between elements. However, the spaces separating the numeric values
with the jointweights element are significant (for example). It is also possible to place comments, or
comment out elements using the notation: <! - - this is comment text -->.

Caution

Most of the OpenSim classes that externalize XML files are written to
ignore any elements they don't handle — so be careful of misspelling
element names as they may be dliently ignored.

1.2.2 Units

Many of the elements for defining inputs to OpenSim make used of numeric values. These are usually
interpreted as floating point values. These may appear alone or as part of larger components, such as
vectors/points or other kinds of elements. By default, if the value represents a distance, then meters are
assumed. If the value represents an angle, then radians are assumed. However, values may be scaled to
different units by suffixing them immediately with either 'in' for inches, or 'deqg’ for degrees. Note that
this is performed in the externalizer, not the class responsible for the element being defined. Hence, isis
possible to erroneously place 'in' after a value that will be interpreted as an angle and the externalization
code will happily scale the value by 0.0254 before passing it to the class in question (the scaling factor
from inches to meters) — so be careful.

1.2.3 Manipulator files

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<manipulator name="BuggyManip" type="serial">
<kinematicchain type="DH">
<!--D-H parameters describing the serial Kinematic Chain-->
<!-- type , alpha , a , d , theta , minlimit , maxlimit -->

<link>revolute , 90 0.6 0 0 , -160.0000, 160.0000 </link>
<link>revolute , 0 0.6 0 0 -10.0000, 160.0000 </link>
<link>revolute , 90 0.7 0 0 , -90.0000, 170.0000 </link>
<link>revolute , -90 0.15 0 0 , -120.0000, 120.0000 </link>
<link>revolute , 0 0.15 0 0 , -120.0000, 120.0000 </link>
<link>revolute , 0 0.1 0 0 , -120.0000, 120.0000 </link>
</kinematicchain>
</manipulator>

Example 1.2.2 - A manipulator description

+ manipulator — This element describes a complete robot manipulator. It is the top level element externalized
by theManipulatorDescription class.
« Attributes
« name — A name for the manipulator (default manipulator).
+ type —Either serial orparallel (default serial). Thevalueparallel iscurrently unused.
« Elements

 kinematicchain - This element specifies the kinematic structure of the manipulator. It is the
externalization of the KinematicChain class.
- Attributes
« type — Either DH or mixed (default DH). This determines which 1ink types are alowed. If DH
then only types revolute and prismatic are alowed. Otherwise the additional types
translating and transform are allowed.
- Elements
« 1ink — Describes the kinematics of a single link via a sequence of comma separated values. The
first value is a string that determines the link type and format of the values that follow. If the type
isrevolute or prismatic thenthelink isaDH type link—Denavit-Hartenberg. The following
four values then correspond to the DH parameters o (alpha), a, d and (theta). DH type links have
a single degree-of-freedom. The final two values correspond to the joint limits—specified in
degrees’ for the revolute joint. If omitted the joint is unlimited. e.g.
<link>revolute, 90, 0.6, 0, 0, -160.0000, 160.0000</link>
If the link type is translating then the three values following the type represent a direction
vector along which the 1-D.O.F. joint trandates. The last two values are aso joint limits. A
transformlink is static (0-D.O.F).

1.2.4 Platform files

<platform mobile="true" holonomic="false" name="buggy">

<dimensions>(4.5700, 2.1600, 0.7000) </dimensions>
<originoffset>(1.2, 0, 0.35)</originoffset>
</platform>

Example 1.2.3 - A platform description

« platform — This element describes a robot platform. It is the top level element externalized by the
PlatformDescription class.
+ Attributes
« name — A namefor the platform (default plat form).
+ mobile —Either true or false (default false). Indicatesif thisis amobile platform (e.g. has wheels
or legs), or a stationary platform.
+ Holonomic — Either true or false (default false). Thisisonly applicable for mobile platforms. It
specifies whether the platform is capable of holonomic motion or not.
« Elements
+ dimensions — If present, indicates that the geometric shape of the platform is a simple box with the
given dimensions. The origin of the box is at its centroid. The dimensions are specified as a 3 element
vector (x,y,z).€d. (4.5700, 2.1600, 0.7000).
+ originoffset — Specifies an offset between the origin of the platform geometry and the origin of the
robot/platform. DefaultstoO-.e. (0, 0, 0).
+ params — Applies only for non-holonomic mobile platforms. It specifies the distance between the
platform origin and the back drive axle (L) and the distance between the back drive axle and the front
drive wheel(s) (W). They are specified as attributes, like s0: <params L="2.9" W="3.7"/>

3As degrees are assumed by default, don't suffix with ‘deg’ or the value will be scaled by the degree-to-radian scaling factor
twice.

1.2.5 Robot files

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<robot name="Buggy">

<!--description of a robot (with a [mobile] platform and one or more
manipulators-->

<platform mobile="true" holonomic="false" name="buggy">

<dimensions>(4.5700, 2.1600, 0.7000) </dimensions>
<originoffset>(1.2, 0, 0.35)</originoffset>
</platform>
<manipulator name="BuggyManip" link="buggymanip.xml">
<offset>(0.2000, 0.2000, 0.0000)</offset>
</manipulator>
</robot>

Example 1.2.4 - A robot description

« robot — This element describes a robot in terms of its components — a platform and optionally some number of
attached manipulators. It is the top-level element externalized by the RobotDescription class. Derived
classes, such as SimulatedRobotDescription may add further specific information (for example,
simulation specific parameters).

« Attributes
« name — A name for the robot (default robot).
+ Elements

+ platform — this element describes the robot platform. It must adhere to the format detailed in section
1.2.4 above. There must be exactly one platform for a robot.

+ manipulator —one or more of these e ements describe each of the manipulators attached to the robot.
The content must adhere to the format described in section 1.2.3 above. In addition the following
attributes and elements may be specified.

« Attributes

« 1link — afile which contains a manipulator description (i.e. its top-level element is manipulator).
This allows the description of the manipulator to be stored in a separate file. In this case the usua
content of the element may be omitted. The file name may be absolute or relative to a resource
directory.

+ name — if aname attribute is specified in addition to the 1ink attribute, this name will override
any name specified in an attribute of the manipulator element in the file referenced by the
link attribute.

+ Elements

+ offset —a3 element vector that specifies an offset from the robot/platform coordinate origin to

the mount point of the manipulator.

1.2.6 Environment files

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<environment type="basic">

<!--robots (description, position, and orientation (Quat))-->
<robot name="TitanII" link="titan2.xml">
<position>(0.0000, 0.0000, 0.100001) </position>
<orientation>(0.0000, 0.0000, 0.0000, 1.0000)</orientation>
</robot>

<!--tools -->
<tool name="ExtensionTool" link="extensiontool.xml">

<position>(0.0000, -1.0000, 0.050001) </position>
<orientation>(0.0000, 0.0000, 0.0000, 1.0000)</orientation>
</tool>

<!--obstacles (position, orientation (Quat) and description) -->
<obstacle name="obstacle(O" type="box">
<position>(0.5000, 1.0000, 0.250001) </position>
<orientation>(0.0000, 0.0000, 0.0872, 0.9962)</orientation>
<dimensions>(0.4000, 0.4000, 0.4000)</dimensions>
<material name="plastic" type="simple">
<density>1</density>
<basecolor>(0.7000, 0.4000, 0.8000)</basecolor>
</material>
</obstacle>

<obstacle name="obstaclel" type="box">
<position>(0.5000, 1.0000, 0.6210) </position>
<orientation>(0.0000, 0.0000, 0.1305, 0.9914)</orientation>
<dimensions>(0.3400, 0.3400, 0.3400)</dimensions>
<material name="plastic" type="simple">
<density>1</density>
<basecolor>(0.7000, 0.4000, 0.8000)</basecolor>
</material>
</obstacle>

</environment>

Example 1.2.5 - An environment description

+ environment — This element describes a virtual environment for the purpose of simulation. It specifies
robots, tools, obstacles and other parameters that define the environment. It is the top-level element externalized
by the SimulatedBasicEnvironment class.

« Attributes
+ type — specified the type of environment specification contained within the element. This attributes
exists to allow different styles of environment descriptions in the future. Currently the only supported
typeisbasic.
« Elements
+ robot —any number of robots may be contained in an environment. The content of this element should
adhere to the format described in section 1.2.5 above, with the following optional additional attributes and
elements.
« Attributes
« 1link —thelink attribute is used to specify a robot file to use as an alternative description of the
robot. In this case the usual content of this element may be omitted. The file name may have an

absolute path or be relative to a resource directory. The referenced file must be arobot file (i.e. a
file whose top-level element is robot).

« name —the name of therobot. If this attribute is specified with the 1ink attribute, then the name
will override any name specified as an attribute to the robot element contained within the file
referenced by the 1ink attribute.

« Elements

+ position — this element specifies the initial Cartesian position of the robot with respect to the
global environment coordinate origin. The vertical axis is the Z-axis whose O point is on the
ground plane with the +ve half-axis pointing up. The position is specified as a 3 element vector.

+ orientation — this element specifies the initial orientation of the robot with respect to the
global environment coordinate frame. It is specified as either a 3 or 4 element vector. If it has 3
elements it is interpreted as roll, pitch and yaw angles (EulerRPY) in radians (by default); if 4
dements it is interpreted as a quaternion (x,y,zw). For detail, see the description of the Orient
class from the base module.

tool —there may be any number of tools present in an environment. The content of this element should
adhere to the format described in section 1.2.7, with the following optional additional attributes and
elements.

« Attributes

« 1link —the 1ink attribute is used to reference an aternative description of the tool, rather than
including the description in-line. It is used analogously to the 1ink attribute of the robot
element.

« Elements

«+ position — this element specifies the initial position of the tool in the environment. It is
analogous to the pos it ion sub-element of the robot element described above.

+ orientation —thiselement specifiestheinitial orientation of the tool in the environment. Itis
analogous to the orientation sub-element to the robot element described above.

obstacle —there can be any humber of obstaclesin the environment. Obstacles are passive objects that
cannot be controlled — although they may move in response to applied forces, such as when coming into
contact with arobot or other moving objects.
« Attributes

« name —aname for the obstacle.

« type —thetype of obstacle. Currently thisislimited to either box or sphere.
« Elements

+ position —the positionin global Cartesian coordinates of the obstacle in the environment. This
isa3 element vector (default units are meters).

« orientation —the orientation with respect to the global frame of the environment. This can be
a 3 or 4 element vector (see the description of the analogous element within the robot element
above).

+ dimensions — only applicable for type box. This element gives the dimensions of the box
along the x, y and z axes respectively. The origin is at the center of the box (centered for each
axis).

+ radius —only applicable for type sphere. Thiseement contains asingle number for the radius
of the sphere. Theoriginisat the center of the sphere.

« material —this element defines the materiad properties of the obstacle body. It isthe top-level
element externalized by the physics: :Material class. Some of the enclosed elements are
only used for visualization and may be omitted if visualization of the environment is not required
(for examplethe basecolor eement which specifies a surface appearance property).

« Attributes
¢ name —astring name for the material.

+ type —atypefor the material. Currently only simple.
- Elements

+ density —this element contains a single numerical value that defined the density of the
material (Kg/m?). For example, the density of water is 1.0. The default is 1.0 if omitted.

+ basecolor —thiselement is a3 element vector that specifies the base surface color of the
material. The elements are interpreted as Red, Green and Blue components respectively and
must be in the range [0...1]. This element may be omitted if visualization is not required (in
which case it will default to green).

+ surfaceappearance — this element specifies the appearance of the surface of the
material.

-« Attributes
+ type —the appearancetype. Currently only image (also the default).
+ image —an image source to use for texturing the surface of the material. This can
be a file with an absolute path or a path relative to a resource directory
(eg.“image/dirt.jpg”).

1.2.7 Tool files

Not yet documented. Tools are essentially like manipulators, but without an offset or transform to the
first joint.

2 Inverse Kinematics On Redundant systems (IKOR)

The IKOR (Inverse Kinematics Of Redundant-manipulators) library module was designed to tackle two

shortcomings of existing techniques and systems for redundant manipulator control. Firstly, IKOR
embodies a new technigue that decouples the computation of al possible motions from the criteria used
to resolve the redundancy by narrowing those possibilities down to a single motion to be executed. This
allows the criteria to be dynamically selected appropriately for the current task. Also, and perhaps more
importantly, the redundancy resolution optimization allows motion constraints to be specified in a
standard way such that various different constraints can be dynamically applied.

2.1 Application programs

The OpenSim distribution contains some command-line applications for exercising the IKOR code.

« ikortestrunner —is used to run off-line tests of the inverse kinematics code, using either static or
dynamic simulations (without a graphical display). All the parameters of the tests are specified via
atest specification file —which is detailed in section 2.2.

+ ikortestviewer* — will read in the test specification and results files output by ikortestrunner and
display the results graphically.

2.1.1ikortestrunner

Theikortestrunner has the following usage:
ikortestrunner <test spec filename>

The test specification file includes al the information necessary to instantiate and run an off-line
(i.e. not real-time) test of various IKOR components. Some of the required information may be supplied
directly within the test specification file or may be specified via references to other files. The format of
the test specification filesis detailed in section 2.2.

The file must provide a specification of an environment, which must in turn specify at least one
robot, which has at least a single manipulator. The robot may have afixed or mobile platform. If mobile,
the platform can be either holonomic or non-holonomic. Currently, only the first robot in the environment
and its first manipulator are used for running the tests. In addition, the environment may contain
obstacles. Any information about the environment and robots not required for a non-graphical, non-real-
time simulation will be ignored (for example, aspects of the appearance of a robot arm not related to its
geometry).

4Note that at the time of writing, the ikortestviewer program has not been ported from the previously used GUI framework
(GLOW & 0sgGLOW) to the currently used Gnome/GTK/gtkmm framework (as used by viewenv).

Each IKOR test consists of one or more sub-tests. Each sub-test consists of a separate trgectory

segment that the manipulator end-effector is required to follow. Each test also specifies information about
which solutions algorithms will be used for the inverse-kinematics computations, possibly limits on some
free variables and possibly various constraints on the system. An example of the output from atest runis
shown below.

Loading test specification from file '/home/jungd/unix/dev/OpenSim/resources/data/test/nhtest.xml’'.
Testing robot:NonHolonomicRobot with manipulator:NHTestArm

Executing test: testl

robot::sim::IKORTester::executeTest -- initial g=[0, -
1,0,0.698132,0.698132,0.698132,0.698132,0.698132,0.698132,0.698132,0.698132] x=
[0.213408,0.0126854,2.80563]

robot::sim::IKORTester: :executeTest -- final g=[-12.5441, -
1.93549,3.1362,0.860632,0.458453,0.196663,0.170966,-0.035325,-0.0302477,0.000811575,-0.00114126]
x=[-14.7865,-4.98724,2.80563] (199 steps)

robot::sim::IKORTest::Test::saveResult -- Saving joint trajectory file

' /home/jungd/unix/dev/OpenSim/opensim/testl_jtraj.xml'.

robot::sim::IKORTest::saveResults -- Saving complete test specification and results to file

' /home/jungd/unix/dev/OpenSim/resources/data/test/nhtest_results.xml'.

Exiting.

Listing 2.1.1 - Output of ikortestrunner

Note that the output file, in this case nhtest_results.xml, is typically written into the same
directory as the input test specification file. The name is derived from the test name-which is part of the
specification.

2.1.2 ikortestviewer

The ikortestviewer is for visualization of the output files generated by ikortestrunner in aline-diagram
format. The figure below shows an example of the displayed visualization. A graphical control window
is also opened that alows control over which tragjectory segments and what interval of each segment isto
be displayed. It has the following usage:

ikortestviewer <test spec filename>

0

%
elei
'. o

By
ity

/

~

NNy
oy
=\

S
e TN
=<

U
/

o
\“\"Wﬂ/\fi. ‘ ":‘:::‘:Q“‘:“"‘
Nl
N

§\\\. S
L

&5

Sess i

s il
L 2

TR
55

Figure2 - Visualization of i kort est r unner output via
i kortestvi ewer showingthe configuration trajectory of a manipulator
mounted on a non-holonomic mobile platform

2.2 Specifying off-line test cases

IKOR Test specification files are written as XML documents®. If you are not familiar with the XML
format you should read section 1.2.1 - which isashort XML primer.

2.2.1IKOR Test files

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ikortest name="nhtest">

<environment link="nhenv.xml"/>
<testrobot>NonHolonomicRobot, NHTestArm</testrobot>

<test name="testl">

<initialconfig> 0 -1 0 40 40 40 40 40 40 40 40</initialconfig>
<jointweights> 1 1 1 1 1 1 1 1 1 1 1</jointweights>
<path frame="eebase" timeinterval="0:1:0.005" link="xback_path.xml"/>
<solution solnmethod="fullspace" optmethod="lagrangian"
criteria="leastnorm" orientationcontrol="false"/>

<constraints>

<jointlimit/>
</constraints>

</test>

<display>

<obstacles/>
<axes/>
<camera alpha="-250" theta="13.5" d4d="9" target="(-0.18, 0.1, 0.7)"/>

</display>

</ikortest>

Example 2.2.1 - An IKORTest test specification

+ ikortest — This element describes an off-line IKOR test case. It is the top level element externalized by the
robot::sim: : IKORTest class.
+ Attributes

name — A name for the tests (default ikortest).

+ Elements

environment — This element describes the smulated environment in which the tests are to be
conducted. It specifies the robot and its platform and manipulators; obstacles and tools etc. Its format is
detailed in section 1.2.6. Note that the environment element supports the 1ink attribute for
specifying an external file that describes the environment.

testrobot — This indicates the name or index of the robot and which one of its (possibly many)
manipulators are to be tested. If omitted the default is the first robot specified in the environment and its
first manipulator. The names or index numbers are given separated by a comma. If names are used, they
must match exactly the names given in the robot or manipulator specifications.

eg.

<testrobot>NonHolonomicRobot,2</testrobot>

This indicates the 3@ manipulator of the robot named NonHolonomicRobot in the environment
description. Note that the indices are 0-based.

SCurrently, there is no explicit Document Type Definition (DTD) defined for the input format. The elements recognized and their
behavior are determined by the input externalization of the robot: :sim: : IKORTest class and are described here. A DTD
may be defined in future.

test — A single test specification. There can be any number of these within the ikortest element.
Each test will use the final state of environment (robot and manipulator) from the previous test (if any),
unlessthe initialconfig element isused to override it.

Attributes

name — A name for the test (default test).

Elements

initialconfig — A space separated sequence of initial values for the robot variables
corresponding to each degree-of-freedom. For example, if the robot is not mobile, the values will
represent the joint positions of the manipulator. The interpretation of each value depends on the
type of joint it corresponds to. For example, for arevolue joint the value will represent an angle (in
degrees). If omitted, the initial configuration will be the last configuration of the previous test, or 0
for thefirgt test.
jointweights — A space separated vector of weight values for the robot variables
corresponding to each degree-of-freedom. These will become the diagonal entries of the diagonal
weight matrix B. This is often used to adjust for different units — for example to weight the
platform position variables differently to manipulator joint angles. If omitted the default is1 (i.e. B
will be the identity).
attachedtool — If present, this element specifies the name of atool that will be considered to
be attached to the end-effector for this test. The name string must match exactly the name of atool
described in the environment description. The variables corresponding to any degrees-of-freedom
of an articulated tool are appended to the end of the configuration vector.
pathl|trajectory — Either a path or a trgjectory can be specified here. Recal that a path
comprises position and orientation components and a trajectory additionally has a time component.
If the test requires a path and a trgjectory is specified the time component isignored. Conversely, if
atragjectory isrequired but a path is specified, the time components are generated such that the path
spans 1 second, unless overridden via the timeinterval attribute. The 1ink element accepts
the following attributes.
« Attributes
« frame — Optional. The coordinate frame in which the path is specified. One of ee,
eebase, base, mount, platform or world. This overrides any specification in the
path or trajectory fileif the 1ink attribute is used.
¢ timeinterval — Optional. Specifies the time interval over which the path is to be
executed (if required by this solution method) — or overridesit in the case where a trgjectory
is specified. It is a string of one of the forms duration, or start-time: end-time ,
Or start-time:end-time: sample-period .Cannot useused withmaxdx.
+ maxdx — Maximum value of |dx| for any step of the trajectory computation (optional).
Either the string default or areal value. Cannot use used with timeinterval.
solution — This element (a sub-element of test) specifies which solution method is to be used
for the inverse kinematics computation. It is an empty element with the options determined via the
attributes described below.

« Attributes
+ solnmathod — Solution method (optional). Either pseudoinv (the default) or
fullspace.

+ optmethod — Optimization method (optional). Either pseudoinv, lagrangian,
bangbang or simplex. If omitted, defaults to pseudoinv if the solution method is
pseudoinv or lagrangianifitisfullspace.

+ criteria — Optimization criteria (optional). Either leastnorm (the default) or
leastflow (incompatible with pseudoinv solution method, and currently
unsupported).

« orientationcontrol — Either true or false. If omitted, defaults to true.
Determines if the inverse kinematics solution will include the orientation components of the
end-effector, or only the position components.

constraints — This element specifies the constraint types that will be handled by the
optimization method (if appropriate). If omitted, the default is unconstrained. Each constraint type
is specified viathe child elements detailed below. Note that most are empty elements.

« Elements

¢ jointlimit — Activate Joint limit constraints for any joint that specified limits in the
platform, manipulator or tool (if attached) descriptions.

« obstacle — Congrainslinks of the manipulator to maintain a distance from obstacles (and
other object/manipulators/robots etc.) that is larger than a specified 'danger’ distance. Note
that the manipulator must have proximity sensors for this to have any effect (as specified in
the manipulator description).

+ acceleration —reserved for future use - not currently implemented.

+ eeimpact —reserved for future use - not currently implemented.

display — An optional empty element used to specify some test specific viewing options for the
ikortestviewer program. Is it typically present as a result of using the save feature of
ikortestviewer. The startIndex attribute specifies the time step index at which the result
trajectory steps will begin to be displayed and the endIndex the last time step index displayed.
result — This dement contains the results of running the test with the ikortestrunner program.
Each line contains a set of comma separated vectors, each with space separated components. The
vectors are time, g, %, dx, and dg. The completed attribute indicates if the test was complete,
or if it was aborted before the end-effector traveled the entire target tragjectory (for example, due to
asolution error).

+ display — This(sub-element of ikortest) isan optiona element used to specify the viewing options
(such as camera parameters, what is shown etc.) for the ikortestviewer program. Isit typicaly present as
aresult of using the save feature of ikortestviewer.

Elements

obstacles — An empty element, that if present indicates that any obstacles specified in the
environment will be shown.

axes — An empty element, that if present indicates that the world frame axes will be shown (with
X,Y & Z labels)

eepath — An empty element, that if present indicates that the end-effector target trajectories will
be shown.

stepmod — An integer number n, that specifies that only every nth time step will be shown (rather
than all the steps asiis the defaullt).

platform — An empty element, that if present indicates that the platform outline will be shown
(currently the outline of the bounding sgquare at the origin in Z).

camera — An empty element, that if present, specifies the 3D camera viewing parameters via its
attributes.

|1 Developer Guide

I ntroduction

OpenSim is primarily a programming library and set of tools for the robotics researcher to develop robot
control code that can be either executed on robotic hardware or used to control real-time or off-line robot
simulations.

This guide provides an architectural overview, a tutorial style introduction and a reference to the
framework API for rabotic control code developers.

1 OpenSim Architecture

The OpenSim system is divided into several modules. When built for a desktop environment, each
module is linked as a shared library®. Each module corresponds to a C++ namespace (and some modules
have sub-modules as nested namespaces). The source directory hierarchy corresponds to the namespaces.
The main modules are as follows (also refer to Figure 3):

+ base — contains classes that provide an abstraction over operating-system facilities, such as files,
timers etc., and also many utility classes for |/O, reading and writing structured formatted files (e.g.
XML files), events handers, smart-pointers, arrays, vectors, matrices, miscellaneous math routines
(e.g. SVD), and many other (non-robotics) related facilities. All other modules depend on the base
module — but it only depends itself directly on operating-system APIs.

« gfx — classes to support graphics used by the smulation module. Currently, provides some basic
geometric objects, like lines, segments and triangles etc. Most of the visualization is currently
handled via the Open Scene Graph (OSG) library”.

+ physics —the physics module provides a set of classes for simulating sets of arbitrarily shaped rigid
bodies acting under the laws of Newtonian mechanics and interacting via various constraints-such as
friction, joints (hinge, universal, slider etc.). An abstract interface is defined to alow alternative
implementations of physics and collision code to be plugged-in. Currently, the only implementation
utilized is the Open Dynamics Engine (ODE)® for physics solving. The implementation can optionally
supply and instantiate OSG objects for visualization (if OpenSim is built with OSG).

« robot — this is the namespace in which &l robotics related interfaces and components are
implemented. It includes interfaces for low-level interaction with robot hardware (either real or

6The terms library and module are used loosely and interchangeably throughout the remainder of the documentation and the
source code comments. So the use of 'library' doesn't necessarily imply a shared dynamically loaded library — athough that
would typically be the case for a desktop build of OpenSim.

7A modern Open Source scene-graph library written in C++. Refer to http://www.openscenegraph.org.

80DE is an open source implementation of a Newtonian solver using both an LCP and an iterative solution method. Refer to
http://opende.sourceforge.net.

simulated), interfaces for controllers, convenient classes for describing robots, platforms and
manipulators at various levels of detail (for example, to describe geometry to the simulation system or
just to record kinematic configurations of manipulators). All the description classes provide
externalization to read and write standard extensible XML specifications of robot platforms and
manipulators. It only depends on the base module.

robot: :control — this module contains some useful control components for developers to
utilize or leverage when writing their own controller code. For example, a
ManipulatorPIDPositionController class.

robot::control::kinematics — this module contains classes related to kinematics and
inverse kinematics. For example, it includes an implementation of a solver for IK of redundant
manipulators using a L agrangian optimizer and a Jacobian generator class (parts of IKOR).

robot: :sim — this module implements smulation of multi-robot environments. It includes
interfaces for describing environments and uses the physics and gfx modules to redize
dynamic simulations. This is achieved by representing robots & manipulators as collections of
constrained rigid bodies for the physics solver. It aso contains classes to support specifying off-
line test-cases and their simulation results for repeated testing at a later time.

apps — thisis the module that contains al the tool program code that utilizes the other modules.
For example, the viewenv program which can read an environment specification (including robots,
manipul ators, obstacles etc.) and ssimulate it with a 3D visualization.

Utilities and OS abstraction
B ase for portability

3D Graphical rendering

3 (workstation only — not for
Graphlcs embedded systems)

A

Simulation of Newtonian
. physics with Coulomb
PhYSICS friction (workstation only —

not for embedded systems)

L Dynamics -

“

Constraint Force ..
Application ; Contact .| Collision
i Ll . . Ll .
. PP . : Determination detection
(joints, contact friction)

Obstacle avoidance
constraint
Robot
T Dynamic simulation
Control
IKOR
—— Kinematics
On/Off-line dynamic or static
simulation (with geometry)
Simulation - SimulatedRobot |~

Figure 3 - overview of module dependencies

In order to become proficient at writing code within the OpenSim framework, first an understanding of
the coding conventions and many of the classes in the base module is necessary. However, before going
into great details about the base module API, atutorial introduction will be beneficial.

2 Tutorial

This section provides an introduction to OpenSim in a tutorial style. First an introduction to some
important classes is given by way of discussion and code snippets. As al the OpenSim modules are
supported by the classes and types in the base module, at least an overview familiarity with many of the
classes provided in the base module is necessary before any sense can be made of even simple robot
control and simulation programs. Hence, the second section provides a base module overview. The
sections following that are a walk-through style tutorial for some robot programs and visualizations for
which complete source-code is listed and discussed. The source code is supplied in the OpenSim
distribution and may be compiled and run.

2.1 Introduction

This section provides an introduction to some of the classes in the robot module. It is not intended that
al the details of the supporting classes be understood at this point, but rather the aim is to give the flavor
of what developing under OpenSim is like and what can be achieved. The code presented here is
sometimes simplified and consists of code snippets; and hence cannot always be compiled as a complete
working application.

Consider the following ssimple hypothetical situation. Suppose that you have a robot that has its
own on-board computer with an operating system and C++ compiler on which you can compile the
OpenSim base and robot modules. The robot has a 7 joint manipulator and a vendor supplied
software library that allows the joint velocities to be commanded. You would like to use the OpenSim
framework to ultimately developer high-level controllers, but for now you just want to use an existing
PID controller from the OpenSim robot: : control module to be able to have simple position control
over thejoints.

Thefirst things you'll need to do isto wrap the vendor supplied functions for commanding the joint
velocities with a ControlInterface derived class. This will dlow the
robot::control: :ManipulatorPIDPositionController class to interface with the
manipul ator.

Before we get to that step, we need a basic OpenSim styled 'main’ program:

// include headers for modules we depend on
#include <base/base>
#include <robot/control/control>

// now the specific classes we need

#incoude <base/Time>

#include <base/Application>

#incuude <robot/ControlInterface>

#include <robot/Controllable>

#include <robot/control/ManipulatorPIDPositionController>

// bring some class names into scope to save typing

using base::Application; // saves us from having to type base::Application
using robot::control::ManipulatorPIDPositionController;

int mai n(int argc, char *argvl])

{
// every OpenSim program needs to declare/instantiate a single
// Application object.
Application app("/resources","/cache");

// ... main control loop goes here ...

return 0;

First, headers for each module on which we will depend are included — in this case base and
robot::control. Although each module will also include the header for modules upon which it
depends itself, we include base here for readability — even though robot : : control would include it
for us anyway. In OpenSim each class is implementation in a separate file — one file for the header® and
one . cpp file for the implementation. Hence, we also include the headers for each class we need. These
will also include other class headers on which they depend, but it will help readability if you specifically
include the classes you use.

Notice that the Application constructor takes two arguments. These are paths to locations for
loading resource files and saving cache files (more on these later). On a desktop system, these will
correspond to directories; on an embedded system they could be something else (such as memory buffers,
network resources, in fact anything that implements the virtual file-system interfaces defined in base).

We could have used the C++ statements:

using base;
using robot;
using robot::control;

Thiswould have pulled in al the classes defined in the respective namespaces. That saves alot of typing,
and may be preferable for quick prototyping programs. For best long term control of name collisions, it
is best to individually list the classes we want to use each with its own using statement (or to
specifically qualify the name where used).

Before we can write the main control loop, we need something to control. So first, lets implement
aclassto represent our robot. In a separate header file (& optionally .cpp file), we might write:

#include <base/base>
#include <robot/robot> // including the module

#include <robot/Robot> // and the abstract class Robot

using robot::Robot;

9Currently, OpenSim follows the C++ convention of not having extensions on header files. However, this may change in future
to more easily accommodate operating systems that force mixing of file names and file meta-data — such as the common
Microsoft Windows practice of using three character name extensions to indicate file content type.

class MyRobot : public Robot
{
public:
MyRobot ()
{
// call any vendor robot init functions
vendor_init(); // for example

}

// standard method we have to implement from base::0Object
virtual String classNanme () const { return String("MyRobot") ;}

// These two methods must be implemented (they are abstract in class Robot)

// This method enumerates the available ControlInterface names and types.
virtual array<std::pair<String,String> > controllnterfaces() const
{
// return an empty array of ControlInterface <name, type> pairs, as we
// don't provide any yet!
return array<std::pair<String,String> () ;

}

/// get a ControlInterface by name
virtual ref<ControlInterface> getControllnterface(String interfaceName="")
throw(std::invalid_argument)

{

throw std::invalid_argument ("control interface not available");

Now we have a class that represents our robot, which doesn't do anything useful. Before we delve into
the two methods above, a short overview of the ControlInterface, Controller and
Controllable classesisin order.

211Controll ers,Control | abl esand Control | nt erfaces

The robot module defines two interfaces (abstract classes) caled Controller and Controllable.
These are intended to represent, not surprisingly, objects that can be controlled (a manipulator, for
example) and objects that do the controlling (a motion controller or path planner, for example),
respectively. Note that any class can be both a Controller and Controllable—which istypically
the case for many classes; save those that either interface directly with the actual hardware or the most
top-level controller. A Controller interacts with a Controllable by way of a
ControlInterface—aso a standard interface. A ControlInterface provides a number of real
valued inputs and outputs'®. For example, a ControlInterface for the velocity control of the joints
of a manipulator might have one output for each joint velocity and possibly one input to read back each
joint encoder position.

101t js possible for a controlInterface to have 0 inputs or O outputs. For example, some sensors may be represented by a
ControlInterface that provides only inputs, no outputs.

TODO: Control systemfigure here

A Controllable is simply any class that can provide one or more ControlInterface
objects. A Controller is just any class that embodies a control loop-that typically calls the
setOutput () and getInput () method of oneor more ControlInterfaces.

class ControlInterface : public base::ReferencedObject, public base::Named
{
public:

ControlInterface() ;

ControlInterface(const String& name, const String& type);

const String& get Type() const;

virtual Int i nput Si ze () const;
virtual String i nput Nane (Int i) const;
virtual Real getl nput (Int i) const;

virtual const Vector& getlnputs () const;

virtual Int out put Si ze () const;

virtual String out put Name (Int i) const;

virtual void set Qut put (Int i, Real value);

virtual void set Qut put s (const Vector& values) ;
}i

class Controllable : virtual public base::ReferencedObject
{
public:
/// Provide ControlInterface for named interface (or default interface)
/// throws std::invalid_argument if the interface name 1s unknown.
virtual ref<ControlInterface> getControllnterface(String interfaceName="")
throw(std::invalid_argument) ;

Y

class Controller : virtual public base::ReferencedObject

{
public:

/** Provide ControlInterface through which Controller may control.
Can be called multiple times to pass multiple ControlInterfaces.
Unknown ControlInterface types will be ignored. */

virtual void setControllnterface (ref<ControlInterface> controlInterface);

/** Query if the Controller has been passed all the ControlInterfaces it
needs via setControlInterface() */
virtual bool isConnected() const;

/** Execute an iteration of the control loop.
returns true if it wants to quit the loop - however this may
be ignored by the user/caller. */

virtual bool iterate (const base::Time& time) ;

}i

Listing 2.1.1 - Signaturesfor Control I nterface, Control | er
and Cont r ol | abl e classes

Each ControlInterface has astring name and a string type. Although these are free-form and can
be anything in your own implementations, they are intended to indicate something about the type of
interface represented and a specific name for each one the Controllable provides. For example, the

SimulatedRobot class implemented in robot::sim that well use later, provides a
ControlInterface of type “JointForceControl” for each manipulator mounted on the
(simulated) robot, accessed via the names “manipulatorN” (where N isthe manipulator index). These
names and types are meant to provide some loose run-time checking that only appropriate connections
between Controllers and Controllables are made. The names and types also show in the
graphical tools for running simulations. You may have noticed that the ControlInterface aso
provides names for individual inputs and outputs. This mainly used for debugging simulations and may
be ignored when implementing ControlInterfacesfor embedded use.

Note

The Input/Output terminology for ControlInterfaces can sometimes
be confusing. It is intuitive from the client/luser of a
ControlInterface—i.e the outputs are those values the client writes to
aControlInterface in order to command a Controllable aobject;
while the inputs are values that the client reads back from
Controllable via a ControlInterface. When actualy
implementing a ControlInterface subclass, this can seem backward,
as the outputs are the values passed to the object and the inputs are those
valuesit must supply to the client/user.

2.1.2A Control I nterface for our robot's manipulator

The Robot class inherits from Controllable, and hence must implement the two methods:
controlInterfaces () - that provides the list of the ControlInterfaces it can provide, and
getControlInterface (name) - that gets a particular ControlInterface instance, given its
string name.

Looking at the documentation (or header) for ManipulatorPIDPositionController, we
can see that it requires a ControlInterface of type “JointVelocityControl”. Inturn, asa
Controllable, it provides an interface of type “JointPositionControl” through which we can
command the joint positions but invoking the setOutput () method. Let is implement a
ControlInterface derived class caled MyvVelocityInterface and update the relevant
methods of our MyRobot class to return it. Note that, as any other code that uses our interface class
doesn't need to know its actual type (just that it is a subclass of ControlInterface), we can hide the
definition as a nested class of MyRobot. If the implementation gets to be too large, we can always move
it into itsown header and . cpp files later.

class MyRobot : public Robot
{
public:

MyRobot ()

{

// call any vendor robot 1init functions

vendor_init(); // for example
}

// standard method we have to implement from base::0Object
virtual String classNane() const { return String("MyRobot") ;}

protected: // hide the definition of our interface
class MyVelocitylnterface : public BasicControlInterface
{
MyVel ocityl nterface ()
BasicControlInterface ("myVel", "JointVelocityControl",// name, type
7, 7) // 7 inputs & 7 outputs
{}

// standard method we have to implement from base::0Object
virtual String classNanme () const { return String("MyVelocityInterface");}

// only really important when writing a simulated Robot
virtual String inputName (Int i) const { return "position"; }
virtual String out put Nanme (Int i) const { return "velocity"; 1}

// read the joint encoder value as pass 1t back to the client/Controller
virtual Real getl nput (Int i) const
{

return vendor_get_joint_encoder (i) ;

}

// take the client/Controller's velocity value for a particular
// Jjoint 'i' and set it using our robot's vendor provided function
virtual void set Qut put (Int i, Real value)
{
vendor_set_joint_velocity (i, wvalue);

}

}; // end of MyVelocityInterface

public:
// These two methods must be implemented (they are abstract in class Robot)

// This method enumerates the available ControlInterface names and types.

virtual array<std::pair<String,String> > controllnterfaces() const

{
// return an empty array of 1 ControlInterface <name, type> pair
array<std::pair<String, String> interfaces;
interfaces.push_back (std: :make_pair<String, String> ("myVel",

"JointVelocityControl") ;

return interfaces;

}

/// get a ControlInterface by name
virtual ref<ControlInterface> getControllnterface(String interfaceName="")
throw(std::invalid_argument)
{
// 1f either MyVel or the default is requested, return our interface
if ((interfaceName=="") || (interfaceName=="myVel"))
return ref<ControlInterface>(NewObj MyVelocityInterface());

throw std::invalid_argument ("control interface not available");

b

That's it. Now we have a Robot class-a Controllable-that can provide a
“JointVelocityControl” type interface that can be used to command its manipulator joint
velocities and read back encoder values. We could have chosen any strings for the name and type of our
ControlInterface, however as our interface is compatible with that documented in the
ManipulatorPIDPositionController header we should use the same type name. Now that our
robot has been integrated into part of the OpenSim framework, we can use any of the preexisting
OpenSim Controller components that use the same interface type. Also, if we write our own
Controller that commands an interface of type “JointVelocityControl”, we can aso use it to
control a simulated robot — as the robot : : sim module contains a SimulatedRobot implementation
that can provide an interface of that type.

One detail to notice in our implementation, is that rather than our interface class inheriting directly
from ControlInterface, weve used a convenience class called BasicControlInterface.
This smply implements some of the required abstract methods of ControlInterface for us. For
example, it implements setOutputs (Vector) asaloop that calls our setOutput () implementation
for each joint in turn. If there is a more efficient way to command multiple joint velocities
simultaneously using the vendor supplied functions for your robot, you may want to override the
implementation of setOutputs yourself.

2.1.3 Instantiating a joint position controller

Now we are ready to fill out our main program to instantiate a joint-position controller, connect it to our
joint-velocity interface and command a particular joint configuration of the manipulator. Back to our
main function:

int mRi n(int argc, char *argvI[])

{
// every OpenSim program needs to declare/instantiate a single
// Application object.
Application app ("/resources","/cache") ;

// create an instance of our Robot (can only be one as it represents a
// real physical robot!)
ref<MyRobot> myRobot (NewObj MyRobot ());

// create a joint-velocity ControlInterface
ref<ControlInterface> vellInterface(myRobot->getControlInterface ("myVel"));

// create a preexisting ManipulatorPIDPositionController, which is a
// controller that uses simple PID control to maintain commanded joint
// position configurations by commanding velocities

// (it is both a Controller and a Controllable)

ref<ManipulatorPIDPositionController> controller (
NewObj ManipulatorPIDPositionController (chain))

// tell the controller which interface to command
controller->setControlInterface(velInterface); // i.e. ours

// set its parameters
controller->setCoeffs (Kp, Ki, Kd);

// Now, obtain a joint-position control interface through which we

// will command the controller (no need to supply a name as there is
// only one - the default)

ref<ControlInterface> posInterface(controller->getControlInterface());

// command the joint configuration we want (this could of course be

// updated in the control loop - but we just want a fixed configuration
// for simplicity in this example)

posInterface->setOutputs (configurationvVector);

// finally, we're ready for the control loop.
// Jjust keep calling iterate()
for(;;) { // i.e. for ever

// might want to read sensors, do other stuff here...
// only one controller in this example

controller->iterate(Time::now ());

}

return 0;

That concludes our example of how to control joint-positions of our hypothetical robot with 7-dof
manipulator. Many details were omitted for brevity and will be covered in the following sections of the
manual. For example, you may have noticed that the PID controller class requires a chain argument
upon construction. This is an instance of the KinematicChain class that is used to describe the
kinematics of serial manipulators. The controller needs such a description so that it knows which joints
are revolute for intelligently handling when angular ‘position’ values wrap around. Many details of
supporting classes, such as the smart-pointer ref<> class, vectors etc. and error handling were also
omitted.

That should give you aflavor of what developing with and building on the OpenSim framework is
like. The following sections of the manual give a more in-depth tutorial on many of the classes found in
the core modules. Following that, a walk-through tutorial for creating dynamic simulations and 3D
visualizationsis presented.

2.2 Thebase module

2.2.1 Basic Types

The base module provides a set of typedef aliases for various types that are designed to be used by
OpenSim and extensions to make it easy to switch their concrete types for specific operating-system
and/or CPU platforms. For example, it would alow you to change you entire code base from using

double precision to single precision floating point values (or anything you wanted if you implement a
class with operator overloading and vaue semantics that behaves like the built-in floating point types),
just by changing the typedef in the base/base header.

The types are as follows:

+ Int —unsigned integers (typically unsigned int)

+ SInt —signedintegers (typically int)

+ LInt —longunsigned integers (typically long unsigned int)
+ Real —floating point values (typicaly double)

+ String —character strings (typically std: : string)

+ Byte —an 8hit quantity (typically unsigned char)

2.2.2 Common types

Storage management

The OpenSim code almost exclusively manages heap storage via reference counting. Instead of using
raw C-style pointers (using the * operator), instead the code uses a smart pointer class, ref, which
behavesin asimilar manner to regular pointers, but allows referenced objects to count how many pointers
refer to them. Once the reference count of an object instance fallsto O, it is automatically deleted. This
is commonly termed garbage collection. It avoids having to think about who 'owns' object instances and
hence where they should be deleted (as they don't need to be explicitly deleted at all)-and also
avoids memory leaks.

The advantage of a reference counted implementation of garbage collection is that object deletion
is deterministic and under full control of the developer—which is important for rea-time systems.
Disadvantages are that al classes must inherit the ReferencedObject class (so classes from other
libraries devel oped independently from OpenSim cannot be managed with ref <> pointers); that an extra
int _refCount fieldisadded to every object (as a consequence of inheriting from the Referenced
class); and that reference cycles will not be collected. These disadvantages could be avoided by other
garbage collection techniques, such as incremental and/or generational garbage collection'?, but these
techniques are not time deterministic.

As ref<> isatemplate class, it alows pointer type-checking like regular pointers, but the syntax
isdlightly different.

// declare a class that will use by-reference semantics I

11These techniques are common among inherently garbage collected languages, such as Javaand C#.

class MyRefClass : public ReferencedObject

{
MyRefClass ()

void method ()
}i

// create an instance
ref<MyRefClass> myRefClass (NewObj MyRefClass ());

// call method, just like a C pointer
myRedClass->method () ;

// another pointer to the same object

ref<MyRefClass> prefd; // initially null (0)

prefd = myRefClass;

prefd->nethod(); // call same method on same instance

if (prefd) {
printf ("prefd is non-null");

}

Much the same semantics as C pointers is supported. Reference pointers can be assigned according
to the rules of pointer compatibility (e.g. A pointer ref<Sub> can be assigned to a ref <Quper> where
Sub inherits Super; the - > operator will perform virtual lookup as usual). Some C pointer manipulations
are explicitly disallowed for type safety, such as pointer arithmetic, assigning a reference pointer from a
C pointer etc. For example:

ref<MyRefClass> r;
r = new MyRefClass(); // compile error.

This will not work as the only time a C pointer can be 'assigned' to a reference pointer is during
initialization, at which time it is assumed that you've created a new instance of the object. It is still
possible to abuse this however:

MyRefClass myrefClass;

ref<MyRefClass> r (&myrefClass) ;
This will compile fine, but will probably cause a crash or segmentation fault at run-time (if you're
lucky!)2. It allocates an object on the local stack, then gives the address of it to the reference pointer.

This is a mistake as the object will be deleted when its reference count drops to O (for example, when
the ref<> r goesout of local scope), but the object was not alocated from the heap using new.

Problems can be avoided by following some simple conventions:

« Divide your classes into two logical types. those that have reference semantics and those with value
semantics.
(examples from OpenSim: Vector, Matrix & Expression have value semantics, while Robot
has reference semantics)

« Make al reference types inherit from ReferencedObject

12For debug builds the Referenced () constructor explicitly checks that the instance isn't on the stack and throws a
std::runtime_error exceptionifitis.

« Alwaysinstantiate reference type instances like this:
ref<MyReferenceClass> refptr(NewObj MyReferenceClass (arg0, argl...));

« Note that NewObj is just a macro for new that can be redefined to add alocation tracking for
debugging/profiling etc.

« Sometimes you'll also seethis:
ref<MyReferenceClass> refptr =
ref<MyReferenceClass>(NewObj MyReferenceClass (arg0...));
Most compilers transform this into the constructor form above rather than calling the default O
argument constructor or ref <> first followed by its assignment operator.

+ Don't use delete (that's why we're using automatic garbage collection after all). That is:
ref<MyRefClass> r(NewObj MyRefClass ()); delete &(*r);
will cause the abject to be deleted twice!

+ Note that, if you don't defined an overridden virtual destructor for your class, the above
statements won't even compile asthe Referenced destructor is protected (for this reason) and
canonly be called by Referenced itself (viadelete when its reference count goesto 0).

+ Never place reference types on the stack (i.e. As local variables) or as struct/class fields (use
ref<>sinstead).

+ Never pass by value, always pass a ref <> (which is just as efficient as passing a C pointer on
most compilers):

ref<ConvexPolyhedra> convexHull (ref<const Polyhedra> p) {...}

« If youd like to make shallow copies of the objects, implement the copy constructor, inherit
base: :Cloneable and implement the clone () method in terms of the copy constructor; if
not, write aprotected copy constructor to prohibit copies.

« Makeall value semantic types inherit from Object® (not ReferencedObject).

+ Make the object semantics behave like the built-in types (int etc.), by implementing both the copy
constructor and operator= ().

+ If the object size is equal to or smaller than that of an int, passit by value. If it islarger, pass it
using a C++ cons t reference (which has the same semantics, but avoids the copy):

Complex sum(const Complex& cl, const Complex& cl) { return cl+c2; }

+ Keepin mind that virtual methods incur an overhead both at call time and for the storage of each object
(as each object must include a pointer to the class's virtual function table). So, virtual methods are best
avoided for classes meant to have value semantics.

13Thisis not strictly necessary if for some reason you can't, don't want to.

Thearr ay class

Thisisadynamicaly sizable array class that has optional index range checking and automatic increasing
capacity. It can be used like the std::vector class but provides some additional features.

+ the indexing operator[] is range checked for debug builds, but not for release builds for
efficiency.

+ You can usethe at (index) methods for indexing when you want range checking at runtime (even in
release builds). In addition, the array size will be automatically 'grown’ when the index is larger than
the current size.

« In addition to the array (sSize) constructor, an array (Sze, initial capacity) constructor is aso
provided so that excessive repeated reallocation to increase the capacity can be avoided. Note that the
capacity isindependent of the size (size <= capacity).

+ Somestd::1list styleaccessorsare available.

Therefli st class

The reflist<T> template class implements a linked list of ref<T>s. It behaves essentialy like
std::1list< ref<T> >. It provides explicit differentiation between alist of ref<T> and alist of
ref<const T>. Inadditiontothebegin () and end () iteratorsit also provides const_begin ()
and const_end ().

Attribute interface classes

The base module also contains a number of simple abstract classes meant to be used as interfaces to
indicate that classes have some particular ‘attribute’. We've adready seen the Referenced class that
indicates that a class that inherits it has the attribute of having a reference count and being garbage
collected. Some others are:

« Named — instances of the object have a String name. Provides a public String getName ()
method and a protected setName (String) method that can be exposed by subclasses if desired.

+ Cloneable —indicates that a class supports making a clone (copy) of itself (a shallow copy in terms
of contained reference pointers) through the clone () method. Thisis especially useful because it is
avirtual method; so a copy can be made even if the concrete type of the object is unknown (which it
would have to be in order to make a copy by calling the copy constructor).

+ Object —the root of (amost) al OpenSim objects. Currently just requires concrete subclasses to
implement the className () method to return a String class name. This is used for debugging
and serialization.

+ Hashable —indicates that objects of the class can generate a hash value (an array of Bytes) from
their value through a call to hashCode (). This can be used, for example, for hash table
implementations of dictionary/map classes.

Serializable — means that objects of the class implement the serialize (Serializer&)
method and hence can be written to and restored from a serialization stream. See section 2.2.5 for
more details.

Externalizable — means that objects of the class implement the externalize
(Externalizer&, ..) method and can read and write their state from/to an externalization
stream, possibly in multiple formats. For example, many OpenSim classes can be externalized to
human readable XML formats. See section 2.2.5 for more details.

Simulatable — classes that inherit from Simulatable implement the preSimulate () and
simulateForSimTime (Time&) methods, indicating that they can be 'smulated’. To implement
your own Simulatable simply provide implementations of these methods and either attach your
instance to the Universe directly via its addSimulatable() method, or cal the
simulateForSimTime () method yourself from within that same method of another

Simulatable.

Math related classes

Math — a class that embodies most of the usual mathematics functions found in platform math
libraries. They are available as static methods. Some of the methods include: sqr, sqrt, cube,
abs, sign, pow (power), random, isNAN (is Non-A-Number), sin, cos, tan, asin, acos,
atan, atan2, degToRad (), radToDeg (), equals(rl,r2,eps) (i.e. equa to within eps
tolerance), zeroIfNeighbour, minimum, maximum (2 & 3 argument versions), bound (&v,
lower, upper), normalizeAngle, normalizeAngle2PI, inverse(Matrix),
nullSpace (Matrix, Int& nullSpaceRank, Real& k2), and pseudoInverse
(Matrix).

consts — this is actually a nested namespace within base that holds a number of useful constants.
They are used with the notation consts: :Pi, consts: :SgrtHalf etc. Some of the constants
include Pi, TwoPi, Infinity (=maxReal), minReal, maxReal, minSInt, maxSInt,
minInt, maxInt, epsilon (1x10%Y), epsilon2 (I1x10?%), inchesPerMeter and

metersPerInch.

Vector — a mathematical vector of arbitrary dimension. Constructed with the dimension as
argument (e.g. vector (3) for a 3D vector). Has overloaded operator () so it can be index (O-
based) via the notation v (1) . Methods like size (), resize (newdim), norm(), magnitude
() (sgrt of norm), negate (), iterators (begin & end), etc.

+ Note that there are aso Vvector2 and Vector3 classes that are specialized for fixed 2&3D
vectors. However, these will probably be deprecated in future in favor of vector. There are
conversions to/from vector3 via the functions tovector3 (Vector) and fromvVector3
(Vector3).

+ The vector header also supplies some utility types and functions for manipulating vectors.
All the usual mathematical operators are overloaded, there are functions for dot (v1,v2) (dot
product), Range (start, end), vectorRange (Vector, Range) (ed. vectorRange
(v, Range(0,2)) = v2 would assign the elements of vector v2 to the subset of elements of v
intherange[0..2)) and zerovVector (dim).

+ Matrix — a mathematical matrix or arbitrary rows and columns. Constructed with the number of
rows and columns as arguments (e.g. Matrix(2,3) for a 2x3 matrix). Has overloaded operator() so it
can be indexed (0-based) via the notation m(r,c). Methods like rows(), cols(), resize(rows,cols),
negate(), and transpose().

+ Notethat therearealso Matrix3 and Matrix4 classesthat are specialized for fixed 3x3 and 4x4
matrices. However, these will probably be deprecated in future in favor of Matrix. There are
conversions to/from Matrix3 and Matrix4 via the functions toMatrix4 (Matrix),
fromMatrix4 (Matrix4), toMatrix3 (Matrix) and fromMatrix3 (Matrix3).

+ The Matrix header also supplies some utility types and functions for Matrix manipulations.
All the usual mathematical operators are overloaded and functions are provided for matrixRow
(Matrix, 7r), matrixColumn (Matrix, c¢), matrixRange (Matrix, rowrange,
colrange), transpose (Matrix), zeroMatrix (r,c), identityMatrix(r,c), €cC.
For example, matrixRange (m, Range(0,2), Range(0,2)) = identityMatrix
(2, 2) would set the upper left 2x2 sub-matrix of m to the 2x2 identity).

+ Orient —the Orient class represents an orientation in 3D space. It makes using an orientation
possible without knowledge of the underlying representation used and allows easy conversion between
many different possible representations. The current representation schemes supported include 3x3
transformation matrices, Euler parameters (which use quaternion arithmetic), Cardan-Bryant (all
combinations of anti-cyclic rotations about the 3 principle axes, eg. XYZ, XZY, etc.), Euler angles
(all combinations of cyclic rotations about

2.2.3 Debugging aids

Exception, Debugln, etc. Assert

2.2.4 Platform abstractions

VEntry & friends, Time, PathName, Application

2.2.5 Serialization and Exter nalization

2.2.6 Utility classes

Trajectory, Path, Orient, Transform, point, EventListener, Expression, Serializer, Externalizer,
Externalizable, Dimension3, Cache, MD5, Universe, World, SVD

2.2.7 Unit tests

TODO: write

2.3 Creating a simple simulation

This section gives a walk-through tutorial on how to create a ssmple dynamic, multi-robot simulation and
visualize it in 3D. This will give you an idea of how the various classes come together to create
simulations so that you can better understand how to go about extending OpenSim with your own
implementations of controllers, simulated sensors, robots, manipulators and other components. If you
just want to instantiate a simulation using existing components you can just specify it using the
environment XML file format and view it with the viewenv program (see the User Guide part of the
manual for details).

We start with a main program similar to the one presented in the introduction. This time, well
assume the program will be built on a desktop/workstation platform with the 3D graphics, graphical user
interface (GUI) and file I/O available. Below is a screen-shot of the end result.

Figure 4 - Screen-shot of simple 3D simulation tutorial

The source code for the program is included with the distribution as sim_tut1.cpp inthe apps
directory. It isreproduced below for easy reference. Parts of the listing are labeled numerically and will
be referred to in the text as'part n'.

#include <base/base>
#include <robot/robot>
#include <robot/sim/sim>

#include <base/Application>
#include <base/Universe>

#include <base/Math>

#include <base/Dimension3>

#include <gfx/TrackballManipulator>

using base::Application; 41
using base::Universe;

using base::Vector3;

using base::Matrix4;

using base::Dimension3;

using base::Point3;

using base::0Orient;

#include <robot/RobotDescription>
#include <robot/sim/SimulatedBasicEnvironment>

using robot::RobotDescription;

using robot::PlatformDescription;

using robot::ManipulatorDescription;

using robot::KinematicChain;

using robot::sim::SimulatedBasicEnvironment;

// Producer / 0SG for visualization
#include <osgProducer/Viewer>

int main(int argc, char *argv[])
{
try {

// Assume that the user has define an OPENSIM HOME environment variable
// that points to the top of their OpenSim installation

// We'll assume that the resource and cache directories are relative

// to that

char *homeenv = getenv ("OPENSIM HOME") ;
Assertm (homeenv!=0, "environment variable OPENSIM HOME defined") ; 42
String home (homeenv) ;

// create singleton app
Application app (home+"/resources",home+"/cache") ; <3

app.displayHeader ("MySim") ;

// make a universe in which everything is simulated 44
ref<Universe> universe = app.universe() ;

// make use of the robot::sim::SimulatedBasicEnvironment to provide a simple

// environment (with a ground, gravity etc.) in which to simulate our robots
ref<SimulatedBasicEnvironment> env (NewObj SimulatedBasicEnvironment (
universe->filesystem(), 45

universe->cache ()
)
// before we can add any Robots to the environment, we need to describe them.

// We do that 'manually' here via code rather than loading a description from a file
// for instruction.

!/

// Describe a wheeled robot with two manipulators

ref<RobotDescription> robotDesc(env->newRobotDescription()); // initially has no
// platform or manipulators

// wheeled platform
ref<PlatformDescription> platformDesc(robotDesc->newPlatformDescription());

platformDesc->set ("MyBuggyPlatform", // name
Dimension3(4.5,2,0.5), // dimensions (m)
Vector3(1.2,0,0.25), // origin offset 46
true, // is mobile
false, // non-holonomic

2.5, 3 // axle offset constants (L, W)
)

// kinematic chain of first manipulator
KinematicChain chainl; // initially empty chain (no links)
// add 4 links using Denavit-Hartenberg (DH) notation - alpha, a, d, theta
// make an alias for Revolute to save typing
const KinematicChain::Link::LinkType& Revolute = KinematicChain::Link::Revolute;

chainl += KinematicChain::Link(Revolute, 0, 0.4, 0, 0);
chainl += KinematicChain::Link(Revolute, 1.5, 0.2, 0, 0); 47
chainl += KinematicChain::Link(Revolute, -1, 0.12, 0, 0);
chainl += KinematicChain::Link(Revolute, O, 0.1, 0, 0);

// describe a manipulator using chainl
ref<ManipulatorDescription> manipDescl (robotDesc->newManipulatorDescription());

Matrix4 m; m.setIdentity();

m.setColumn (4, Vector3(0,0,0.15)); // translation up Z by 0.15
manipDescl->set ("SmallManip", // name
m, // transform from platform to first joint <8
chainl) ; // kinematic chain

// next, describe another manipulator, with more links this time
KinematicChain chain2; // initially empty chain (no links)
// add 6 links using Denavit-Hartenberg (DH) notation - alpha, a, d, theta
chain2 += KinematicChain::Link(Revolute, 0, 0.6, 0);
chain2 += KinematicChain::Link(Revolute, 1.3,

; <‘S)

(0.6,
chain2 += KinematicChain::Link(Revolute, 1, 0.
chain2 += KinematicChain::Link(Revolute, -2, 0.
chain2 += KinematicChain::Link(Revolute, 0, 0
chain2 += KinematicChain::Link(Revolute, 3 0

N W W wo
O O O O oo
O O O o o

2,

ref<ManipulatorDescription> manipDesc2 (robotDesc->newManipulatorDescription());

manipDesc2->set ("BigManip", // name
m, // transform from platform to first joint 410
chain2) ; // kinematic chain

// now we've described the platform & manipulators,
// we can use these to desscribe the robot

// first, put the manipulators in an array
array<ref<const ManipulatorDescription> > manipDescrs(2) ;

manipDescrs [0] = manipDescl;

manipDescrs[1] = manipDesc2;

// and an array of the mount point offsets relative to the platform<11
array<Vector3> manipOffsets(2) ;

manipOffsets[0] = Vector3(0.6,0.8,0.0);

manipOffsets[1l] = Vector3(0.6,-0.8,0.0);

// Now place the platform and manipulator descriptions in our robot description

robotDesc->set ("MyBuggy", // robot name
platformbDesc, // platform
manipDescrs, // manipulators S| 1 2

manipOffsets

)

// OK, now we have described our robot, lets add two instance to the environment
env->addRobot (robotDesc, Point3(0,0,1.4), Orient(0.01,0.01,0)); 413
env->addRobot (robotDesc, Point3(0.5,4,1.4), Orient(0.01,0.01,0.3));

// now tell the universe about our environment

universe->addworld (env) ; // tell universe to visualize it 414
universe->addSimulatable (env) ; // tell universe to simulate it
//

// Next, if we want to visualize the simulation in 3D we need to setup
// a window to render into using OpenProducer / 0OSG

// construct the viewer.

// (this is fairly boiler-plate code - refer to the Producer & 0SG docs)
Producer: :RenderSurface *rs = new Producer::RenderSurface;
rs->setWindowName ("MySim") ;

rs->setWindowRectangle (0,400,800,600); // set window pos/size 415
Producer: :Camera *camera = new Producer::Camera; // a camera
camera->setRenderSurface(rs) ;

Producer: :CameraConfig *cfg = new Producer::CameraConfig;

cfg->addCamera ("Camera", camera) ;

osgProducer: :Viewer viewer (cfqg) ;

// set up the viewer with sensible default event handlers.
viewer.setUpViewer (osgProducer: :Viewer: : STATE MANIPULATOR |
osgProducer: :Viewer: :HEAD_LIGHT SOURCE |
osgProducer: :Viewer: : STATS_ MANIPULATOR |
osgProducer: :Viewer: : VIEWER_MANIPULATOR | < 1 6
osgProducer: :Viewer: :ESCAPE_SETS_DONE) ;

// a camera manipulator to allow us to move the view around via the mouse
gfx::TrackballManipulator* cm = new gfx::TrackballManipulator () ;
viewer.selectCameraManipulator (viewer.addCameraManipulator (cm)) ;

// Now, ask the environment to create a scene (an 0SG Visual)
0sg: :Group* sceneRoot = NewObj osg::Group; // an empty OSG group node<17
sceneRoot->addChild(env->createOSGVisual ());

// now with the whole env visualization as a child
// and tell the viewer of our scene
viewer.setSceneData (sceneRoot) ;

// open the window
viewer.realize() ;

// move the camera to somewhere sensible so we can see something
cm->setModelScale (2) ;

// eye, center, up
cm->computePosition (osg::Vec3(9,2,6), osg::Vec3(0,2,0), osg::Vec3(0,0,1));

// Finally, we need a main loop
// here we step the simulation and update the view

universe->preSimulate(); // initialization step 418

// this simple main loop doesn't have any frame-rate control or other waiting,
// so it will just render frames as fast as possible (100% CPU utilization!)

while(!viewer.done()) {

// wait for draw/cull/update traversals to finish before changing the world state
viewer.sync () ;

// step the simulation (for 100th of a sec - simulation time, not real-time)
universe->simulateForSimTime (1.0/100.0) ;

// update the scene by traversing it

viewer.update () ; 419

// fire off the traversals (e.g. draw)
viewer.frame () ;

} // end main loop (when ESC hit)

viewer.sync () ;
} catch (std::exception& e) {
Consoleln ("caught: " << String(e.what())); // display error info

}

Consoleln ("Exiting.") ;

return 0;

2.3.1 Setup

In the first part (1) of the program, we include the header files for the various classes we wish to use.
Some classes may not be explicitly listed if we know that the header we're including will include them in
turn. For example, the robot/robot header includes many of the basic types commonly used by the
robot APl (Vector3 and Orient, for example). Here we aso bring the classes we will be using into
the current namespace. As discussed in the tutorial introduction, only explicitly listing the types we want
in this way is good software engineering practice because it avoids polluting the current namespace with
unwanted names that might clash with names we want to use later. However, sometime when we're just
prototyping or quickly need to write short programs we're not so concerned such issues. In that case
much of the verbosity of includes and using statements may be avoided by creating a common header file
that includes all the headers you routinely use and including that in all your applications. Also, you can
bring al symbols in a given namespace into the current namespace with using statements like the
following:

using base;
using robot;
using robot::sim;

Next, comes the main function of the program. First it performs some initialization, then describes some
robot parts — like platforms and manipulators. These descriptions are then used to instantiate two virtual
robots that are added to a ssmulated environment. Finally the visualization of the environment is setup
and amain loop to continuously step the simulation in small increments is entered.

Parts 2 and 3 create a single instance of the Application class and pass it the locations of our
resources and cache (as discussed in section 2.1). Part 4 creates a new empty Universe. Theuniverse
is a container for a set of Worlds and Simulatables. A world represents the visualization of
something (in our case a simulated environment containing robots). A simulatable is anything that
maintains some simulation state and typically needs to be stepped during a simulation. The
implementation of the whole environment with robotsisa simulatable that in turn encapsulates other
simulatables, such as the rigid-body physics model, collision detection, controllers and the like.

Next, part 5 of the program uses a class that is provided in the robot : : sim library, which can manage
and visualize a simple simulated environment consisting of multiple robots, objects and a flat ‘ground'
plane with gravity (the Earth's acceleration by default). Initially the environment is empty—consisting of
only the ground. Once we've create some robots we can add them to this environment.

2.3.2 Describing a Robot

In order to instantiate some virtual robots, we first need to obtain or create a description of arobot and its
parts. Although the robot and robot: :sim libraries provide facilities for specifying robot parts,
robots, sensors and whole environments via files which can be read into the program, what these

represent will be made clearer if we construct our robot programmatically—which is what this tutorial
program does beginning with part 6.

At the beginning of part 6 anew RobotDescription is created ready to hold the various robot
parts. We start by describing the platform, which is the main body of the robot—the part to which the
coordinate frame of the robot is fixed.

As an aside, you may have noticed a pattern in the way instances of the description classes are
created. In particular, they are each created via factory methods'#. So, the RobotDescription was

instantiated using the newRobotDescription() method of Environment; while the
PlatformDescription was instantiated via the RobotDescription's
newPlatformDescription() method (and newManipulatorDescription() for the

manipulator). Why use these factory methods instead of ssimply instantiating them using a statement like
NewObj RobotDescription()? The factory method is the preferred way because within the
libraries there may be a whole family of different classes that inherit from RobotDescription (for
example). The basic robot description is very generic in nature. However, sometimes you (or the library)
need to describe properties of a robot or part that only pertain to a specific use. For example, the
robot: :sim library uses a class caled (you guessed it) SimulatedRobotDescription. This
adds properties that are only relevant for smulations to the description. The
robot: :RobotDescription classis no place for such specialized properties—for example, you may
want to build OpenSim with the robot library for a computer embedded on a physical robot and
wouldn't want to include the robot: :sim library at al. In summary, the preferred way to create the
description classes is via appropriate factory methods. In that way the actual concrete class used to
implement the description is hidden from you as you just manipulate references to the generic
RobotDescription, PlatformDescription efc. (athough the specific classes can be obtained if
you need access to non-generic properties).

Now, back to the program. Part 6 continues by setting the various properties of the platform
description, including its dimensions and the wheel axle parameters L and W (more on these in the
reference section). Next, in part 7, a manipulator description is created to describe a jointed serial
manipulator that will be attached. First, however, the serial chain needs to be described. Thisis achieved
using the KinematicChain class. The KinematicChain class has value semantics, so it doesn't
need to be referenced using the ref smart-pointer. When assigning or passing instances to functions or
methods, logically a copy will be made (although the implementation will avoid actual copying where
possible for efficiency). It alows various manipulations of a chain of links, including adding new links
to the end of the chain via the overloaded addition operator. The Link class itself also has value
semantics and is a nested class of KinematicChain. There are numerous types of links and ways to
specify them, but only the Denavit-Hartenberg notation is used in the program, which creates 4 new
Links and adds them to the end of the chain. Next, a new ManipulatorDescription is created

14y ou can find a detailed explanation of the creational factory pattern in any good book on software design patterns near a
bookshelf (or on-line library) near you. For example, the classic Gang of Four (GOF) book, “Design Patterns, Elements of
Reusable Object-Oriented Software”, Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.

through a factory method. Its properties are set in part 8; a name, the kinematic chain just constructed
and a homogeneous 4x4 transformation matrix that specifies the transformation from the 'mount point' to
the origin of the first joint of the manipulator. In this case, the transformation is just a translation of
0.15m up the Z-axis to lift the joint above the mount point on the top of the platform. Parts 9 and 10 are
similar, but they create a second manipulator description, this time with more links and the name
'BigManip'.

Finally, in parts 11 and 12 the program uses the platform and manipulator descriptions to describe
arobot. Since the RobotDescription object was dready created near part 6, we just need to set its
properties. The manipulator descriptions are supplied as an array, hence part 11 creates a two element
array and assigns our manipulator descriptions as its elements. In addition, the robot needs to know
where the manipulators are mounted in relation to the platform coordinate origin. These 'mount point’
offsets are also supplied in an array (of vector3s).

Now that a Robot has been described, via descriptions of its constituent parts, the program
instantiates two in different positions, in the simulated environment (part 13). For each robot added to
the environment a description, position and orientation is supplied.

2.3.3 Viewer setup

In order to actually visualize the simulated environment, we need to setup a window and somehow
arrange for the environment to render itself. This is achieved in parts 15-17 of the program using the
Producer and Open Scene Graph (OSG) libraries. Most of this code is boiler-plate code that can be
copy& pasted or abstracted for reuse. The respective library documentation can be consulted for detail if
required.

To summarize, first a window is created via the Producer library's RenderSurface class. A
Camera is created, to define which part of the environment we want to be able see, and attached to the
render surface. Next the OSG plug-in library for interfacing to Producer—osgProducer—is utilized to
create a viewer—which will manage asking the scene-graph to render itself onto the render surface and
aso manipulation of the camera in response to mouse movement (with the help of the
TrackBallManipulator class).

In part 17, the simulated environment is asked to create an 0SGVisual-which is an OSG scene-
graph containing all the geometry representing the objects in the environment (i.e. two robots). The
visual is added to a new empty scene-graph 'sceneRoot' and the viewer informed of the whole graph so
that it can manage rendering it. Finaly, the window is opened via viewer.realize () and the
camera set to areasonable initial configuration.

2.3.4 The main loop

Part 18 of the program calls the Universe's presimulate () method, which calls preSimulate
() onal simulatables attached. Typicaly a Simulatable uses this method to initialize itself
prior to calsto simulateForSimTime () which actualy 'step' the simulation.

Part 19 encompasses the main loop of the program. It is a while loop that exits when
viewer .done () returnstrue (e.g. when the ESC key it pressed). If al the program needed to do was
to render the environment repeatedly, it could just call viewer.frame() over and over in the loop. In fact,
just calling it once would be enough as the environment would remain static. However, in addition to
rendering the environment the program also needs to update the state of the ssmulation and also update
the scene-graph to be rendered. The usual sequence of events dictated by Producer/OSG for updating and
rendering a scene-graph is to call viewer.sync (), viewer.update () and viewer.frame ()
each time through the loop. The call to sync () is needed because OSG is multi-threaded and it doesn't
make sense to request a frame to be rendered before the previous one has been finished. The update ()
call updates the state of the scene-graph itself. In this program the scene-graph is modified by changes to
the configurations of the objects in the environment being simulated. These are updated by a cal to the
Universe::simulateForSimTime () method. Hence, it islogical to place this call just before the
cdl to update(). The simulateForSimTime () calls the corresponding method on 4l
simulatables attached to the universe-in this case just our SimulatedBasicEnvironment instance

env.

So, the program loop calls sync (), simulateForSimTime (), update () and frame () in
that order. Note that this will render frames as fast as the CPU and graphics hardware can manage.
Depending on the complexity of the environment, this may be much faster that the update rate of your
screen. Hence, although adequate for this example, in practice it would be better to place a delay in the
loop to slow down the rendering to areasonable rate (e.g. 30-100H2).

Now, if you build and run the program, you'll see awindow like that shown in Figure 4. If you are
quick you may see the robots initially fall to the ground, as they were positioned slightly above it. The
manipulators will just fall down like rag-roll arms as they are not controlled (no torque applied to the
joints, nor dampening specified). Y ou can move the camera around using the mouse with various button
combinations.

In this section we've seen how to create a simulation and visualize it by programmatically
describing the components of the robots we wanted to simulated and linking them together. If this seems
like an arduous way to specify simulations then the next section will explain the easy dternative—
specifying the simulation in afile and just loading the file at run-time to instantiate the simulation.

2.4 Creating a simulation from specification files

This second program demonstrates loading an environment specification, including the descriptions of all
contained robots and their constituent parts, from an XML file stored in the resource directory. The first

and last parts of the program are identical to the previous one and the middle section that described all the
robot components has been completely replaced with a few lines to load the environment description
from afile instead (part 1 in the program listing below).

The environment description is stored in the resources directory, under a subdirectory called 'data
and in the file named 'sim_tut2_env.xml'. This was created by adding a few lines to the program
from the previous tutorial to save the environment into afile. You can examine the contents of the file
with atext viewer or editor. To understand it you may need to refer to section 1.2 File Formats in the
user guide part of the manual. Because it was generated via program output rather than hand written, it is
a monolithic description of the whole environment in a single file. In particular, there are two robots in
the environment and the descriptions of their manipulators and platforms are embedded in each — even
though both are the same (recalling from the previous program, we instantiate two identical robots).
Typically, if hand writing environment specifications, the specification would be split over several files
to avoid repetition and help maintainability. For example, the platform and manipulators may be
specified in separate XML files and just referenced by a robot XML file, which would be referenced in
turn by the environment file (twice in this case). Please refer to the program listing.

#include <base/base>
#include <robot/robot>
#include <robot/sim/sim>

#include <base/Application>
#include <base/Universe>

#include <base/Math>

#include <base/Dimension3>

#include <gfx/TrackballManipulator>

using base::Application;
using base::Universe;
using base::Vector3;
using base::Matrix4;
using base::Dimension3;
using base::Point3;
using base::0Orient;

#include <robot/RobotDescription>
#include <robot/sim/SimulatedBasicEnvironment>

using robot::RobotDescription;

using robot::PlatformDescription;

using robot::ManipulatorDescription;

using robot::KinematicChain;

using robot::sim::SimulatedBasicEnvironment;

// Producer / 0SG for visualization
#include <osgProducer/Viewer>

int main(int argc, char *argv[])
{
try {

// Assume that the user has define an OPENSIM HOME environment variable
// that points to the top of their OpenSim installation

// We'll assume that the resource and cache directories are relative

// to that

char *homeenv = getenv ("OPENSIM HOME") ;
Assertm (homeenv!=0, "environment variable OPENSIM HOME defined") ;
String home (homeenv) ;

// create singleton app
Application app (home+"/resources",home+"/cache") ;
app.displayHeader ("MySim") ;

// make a universe in which everything is simulated
ref<Universe> universe = app.universe() ;

// make use of the robot::sim::SimulatedBasicEnvironment to provide a simple

// environment (with a ground, gravity etc.) in which to simulate our robots

ref<SimulatedBasicEnvironment> env (NewObj SimulatedBasicEnvironment (
universe->filesystem(),
universe->cache ()

)

// now load the complete description of the environment, with robots and
// their parts from the file 'data/sim tut2_env.xml' in the resource
// directory
ref<base::VFile> envFile(universe->cache()->findFile(
String("data/sim _tut2_env.xml"))); < 1

env->load(envFile, "xml");

// now tell the universe about our environment

universe->addWorld (env) ; // tell universe to visualize it
universe->addSimulatable (env) ; // tell universe to simulate it
//

// Next, if we want to visualize the simulation in 3D we need to setup
// a window to render into using OpenProducer / 0SG

// construct the viewer.

// (this is fairly boiler-plate code - refer to the Producer & 0SG docs)
Producer: :RenderSurface *rs = new Producer::RenderSurface;
rs->setWindowName ("MySim") ;

rs->setWindowRectangle (0,400,800,600); // set window pos/size
Producer: :Camera *camera = new Producer::Camera; // a camera
camera->setRenderSurface(rs) ;

Producer: :CameraConfig *cfg = new Producer::CameraConfig;
cfg->addCamera ("Camera", camera) ;

osgProducer: :Viewer viewer (cfg) ;

// set up the viewer with sensible default event handlers.

viewer.setUpViewer (osgProducer: :Viewer: : STATE MANIPULATOR |
osgProducer: :Viewer: :HEAD_LIGHT SOURCE |
osgProducer: :Viewer: : STATS_MANIPULATOR |
osgProducer: :Viewer: : VIEWER_MANIPULATOR |
osgProducer: :Viewer: :ESCAPE_SETS_DONE) ;

// a camera manipulator to allow us to move the view around via the mouse
gfx::TrackballManipulator* cm = new gfx::TrackballManipulator() ;
viewer.selectCameraManipulator (viewer.addCameraManipulator (cm)) ;

// Now, ask the environment to create a scene (an 0SG Visual)
o0sg: :Group* sceneRoot = NewObj osg::Group; // an empty OSG group node
sceneRoot->addChild(env->createOSGVisual ());

// now with the while env visualization as a child
// and tell the viewer of our scene
viewer.setSceneData (sceneRoot) ;

// open the window
viewer.realize() ;

// move the camera to somewhere sensible so we can see something
cm->setModelScale (2) ;

// eye, center, up
cm->computePosition (osg::Vec3(9,2,6), osg::Vec3(0,2,0), osg::Vec3(0,0,1));

// Finally, we need a main loop
// here we step the simulation and update the view

universe->preSimulate(); // initialization step
// this simple main loop doesn't have any frame-rate control or other waiting,
// so it will just render frames as fast as possible (100% CPU utilization!)

while(!viewer.done()) {

// wait for draw/cull/update traversals to finish before changing the world state
viewer.sync () ;

// step the simulation (for 100th of a sec - simulation time, not real-time)
universe->simulateForSimTime (1.0/100.0) ;

// update the scene by traversing it
viewer.update () ;

// fire off the traversals (e.g. draw)
viewer.frame () ;

} // end main loop (when ESC hit)

viewer.sync () ;
} catch (std::exception& e) {
Consoleln ("caught: " << String(e.what())); // display error info

}

Consoleln ("Exiting.");

return 0;

}

The SimulatedBasicEnvironment class inherits from Environment and hence is an
Externalizable. This means it supplies the externalize () method and it's convenience
methods 1cad () and save (). Here the program uses the 1oad () method to load the content of the
sim_tut2_env.xml fileinto the env instance. The first parameter to load is a VFile—-which isthe
abstract interface to al file-like 1/0 streams. The program uses the Universe cache's findFile ()

method to obtain a vFile from the supplied file-name, which is the easiest way to get avFile from a
file if it is located in the resource path. Although we could have bypassed the cache and used the file-
system directly, for some file-formats that require preprocessing upon loading, the cache may be able to
speed up the load process by re-using previously preprocessed and cached information. In this case, for
the current implementation, nothing is cached, but it is good practice to use the cache interface anyway.

Once the environment has been loaded, the remainder of the program is identical to the program
from the last section. If you compile and run this program (which can be found in
apps/sim_tut2.cpp), you'll get the same result as before.

Although this allows us to examine the environment stored in the specification XML file, we could
also have loaded it into the viewenv utility (see section 1.1.1 of the User Guide). This utility
additionally allows us to perform some basic control of the robots and their manipulators.

3 Guide

3.1 Inver se Kinematics

The tutorial section of this guide explained how to programmatically instantiate a simulated environment
containing a robot (or robots) and visualize via a smulation loop. In addition, section 2.1.1 described
how a robot, or any actuated device that provides a ControlInterface, can be controlled utilizing
the Controller and Controllable interface classes. This section explains how a robot
manipulator can be controlled via inverse kinematics by employing the existing inverse kinematics
controller classes from the robot: : control: :kinematics module.

3.1.1Using | KORControl | er

The easiest way to utilize the provided inverse kinematics functionality is to use the IKORController
class. Thisclassin turn uses a number of supporting classes that can be used directly if alower-level of
access is required. The supporting classes will also be described below. The TKORController class
is named after aresearch project in which the techniques used by the supporting classes were devel oped—
the IKOR project (Inverse Kinematics On Redundant systems)?®s.

The IKORController classisboth aController andaControllable. Assuch, it needs
to have a suitable ControlInterface passed to it viathe setControlInterface () method—in
this case the ControlInterface must implement the “JointPositionControl” type. For
example, the SimulatedRobot class provides this interface type (for example, by calling

SimulatedRobot: :getControlInterface (“manipulatorPosition0”);). As a
Controllable, the IKORController provides two interface types in turn (via its
getControlInterface() method)-one for controlling and reading the end-effector

position/orientation (whose type is “EndEffectorPositionControl”) and another convenience
interface for reading the positions of each link origin (of type “LinkOriginPositions”).

The inverse kinematics computations are performed in the classs iterate (base: :Time)
method (a method inherited from Controller). Hence, the control program's main loop (or the
iterate () method of ahigher-level Controller) should periodicaly call iterate ().

Upon construction, the ITKORController must be provided with the solution method, a Robot
class, the index of the manipulator to be controlled and some other options. The solution methods

15see “Resolving Kinematic Redundancy with Constraints Using the FSP (Full Space Parameterization) Approach”,
Francois G. Pin & Faithlyn A. Tulloch, Proceedings of the 1996 |EEE International Conference on Robotics
and Automation.

and “Motion Planning for Mobile Manipulators with a Non-Holonomic Constraint Using the FSP (Full Space
Parameterization) Method”, Francois G. Pin, Kristi A. Morgansen, Faithlyn A. Tulloch, Charles J. Hacker
and Kathryn B. Gower, Journal of Robotic Systems 13(11), 723-736 (1996).

currently supported are LeastNorm and FSPLagrangian. The LeastNorm method uses a Pseudo-
inverse computation to provide a solution that gives the least norm joint motion, but doesn't support any
constraints. Thisisachieved using the LeastNormIKSolver class.

The FSPLargrangian method uses the IKOR class, described in the following section, which
has support for constraints. By default, the TKORController creates constraints for joint-limits
according to the limits obtained via the KinematicChain (which isin turn retrieved via the Robot's
RobotDescription). Inaddition, if the Robot instance passed can supply aControlInterface
of type “LinkProximitySensors” for the manipulator being controlled (through its
getControlInterface () method), then obstacle avoidance constraints are used during the solution
computations by providing link proximity sensor data to the InverseKinematicsSolver (IKOR)
via its setProximitySensorData () method. The constructor also has a platformActive
option, which when true informs the IKOR solver that the first 3 degrees-of-freedom in the kinematic
chain represent a non-holonomic platform (x,y,theta) and enables a suitable non-holonomic constraint.

// create an IK controller

ref<IKORController> ikorController (NewObj IKORController (
IKORController: :FSPLagrangian,
robot, // Robot instance
index, // index of manipulator on robot to control
false, // no platform dofs
orientationControl, // control orientation?
Orient::EulerRPY)// orient representation in state

)

// give the controller the ControlInterface via which it can command jount positions
ikorController->setControlInterface(jointPositionInterface) ;

// set threshold distance from links, below which obstacle avoidance is triggered
ikorController->setProximityDangerDistance(0.1); // 10cm

// get a ControlInterface via which the end-effector position[/orientation] can be

// commanded (in this case of type "EndEffectorPositionControl"). No name is necessary
// as this is the default interface returned.

ref<ControlInterface> eePosInterface(ikorController->getControlInterface());

// main loop
for(;;) {

// set new target end-effector pos[/orient]

// (vector must be 3-dim if no orientation control, otherwise it

// must be of dim 3+ (no. orient components)

// - for example, if orientation is specified in EulerRPY format, 6-dim)

eePosInterface->setOutputs (endEffectorTargetVector) ;

// iterate the controller
// - if IK needs to be computed this iteration, it will be inside this call
// (dx = difference between target and current position)

ikorController->iterate(Time::now());

3.1.2 The Full-Space Par ameterization approach

The IKOR solver class (used by TKORController) implements the Full-Space Parameterization (FSP)
approach described in the articles referenced above. The solution is broken down into two parts. Firstly,
a FullsSpaceSolver (by default the SVDFullSpaceSolver class) is used to generate a vector-
space of possible joint motions that satisfy the requested end-effector motion and incorporate the
available redundancy in the manipulator. Any method may be substituted by deriving a class from the
FullSpaceSolver abstract interface class. For example, the TKORFullSpaceSolver class
implements the original technique described in the references (which has been superseded by the SVD
method). Refer to the figures below for the relationships between the various classes and interfaces.
Next, the space of solutions is narrowed to a single solution vector using Lagrangian optimization,
resulting in a solution that minimizes a given criteria while also satisfying a set of constraints. By
default, the AnalyticLagrangianFSBetaOptimizer class is used by IKOR (an anaytic
Lagrangian in full-space with beta-form constraints algorithm), but any class implementing the
LagrangianOptimizer abstract interface could be used.

In genera an optimization criteria is represented by any class implementing the
Optimizer: :0bjective abstract interface and constraints are represented by classes that implement
the Optimizer::Constraints abstract interface class. However, the
AnalyticLagrangianFSBetaOptimizer requires criteria and constraints in a particular form, as
represented by the ReferenceOpVectorFormObjective and BetaFormConstraints classes
respectively (refer to the referenced articles for detail on the algorithm formulation).

robot:controlkKinematics:InverseKinematicsSolver

robclt::control::kinematics::IKOR| |robot::control::kinematics;:Leas’tNormIKSoIver| |robot::control::kinematics;:OIdIKOR

robot:control:kinematics:FullSpaceSolver

robot:control:kinematics: IKORFullSpaceSolver | |robot::control::kinematics::SVDFuIISpaceSoI\rer

robot: control:kinematics: Optimizer

| robot:centrol:kinematics:LagrangianOptimizer |

T

robot:control:kinematics:AnalyticLagrangianF SBetaOptimizer ‘ ‘robot:control::kinematics::AnaIyticLagrangianNuIISpaceBetaOptimizer

Figure5 - Inheritance diagram of selected IK solver classes

robot:control;:kinematics: Optimizer:Objective

robot:control: kinematics:Reference OpVectorFormObjective

robot::control: kinematics: Optimizer: Constraints

| robot:control::kinematics::BetaFormConstraints‘

Figure 6 - Inheritance diagram of Cbj ecti ve & Const r ai nt interfacesused by the
Lagrangi anOpti m zer

Some examples of constraints that have been formulated in beta-form for use with the FSP beta-form
optimizer include joint-limits (IKOR: : JointLimitBetaConstraint) and a constraint that applies
a'push-away' force to a specific point on amanipulator (IKOR: : PushAwayBetaConstraint) which
is used for obstacle avoidance.

3.2 Obstacle Avoidance

In order implement obstacle avoidance by manipulators during inverse kinematic control, information
about the proximity of obstacles in relation to the manipulator's links is required. If using the TKOR
solver directly, such information can be obtained via any method and supplied by a call to the
setProximitySensorData () on each iteration. This method takes an array of
LinkProximityData structures (defined in InverseKinematicsSolver), one per link in the
kinematic chain. Each structure contains the distance to a detected 'object’, the direction from the
detection point and the distance along the link from the link's origin to the detection point (e.g. proximity
sensor position, for example). The danger distance, d, is aso provided, which is the distance below
which a constraint becomes active to push the link away from the ‘obstacle’.

If using the IKORController class instead, obstacle proximity information is automatically
obtained from the passed Robot object instance. The Robot: :getControlInterface () method
is caled with an interface name of “manipulatorProximityN”’ (where N is is the index of the
manipulator in question) to obtain an interface to link proximity sensors'é. For example, if performing
simulation, the simulatedRobot class provides this interface by computing proximity distances using
the physics module collision detection infrastructure.

Figure 7 - Manipulators avoiding each other and the platform.
Yellow linesindicate shortest vector from a link proximity 'sensor’ to
the detected obstacle that iswithin a danger distance threshold.

16since typical proximity sensors (and the SimulatedRobot simulated sensors) cannot determine what isin proximity to the
sensor, the IKORController will indiscriminately avoid anything in proximity to the manipulator links—including its own
links or platform and other manipulators.

4 Reference

111 Appendix

1 Build & installation

Caution

As OpenSim is still very much in development, the installation is still not
polished and the instructions here are sketchy and incomplete. Please
contact the developer(s) for help.

If you're not a core developer, you'll need to download the tar archive and extract it. Core developers
can use subversion. The build tool bjamisincluded in the distribution of boost.build. Ensureitisin your
path. Examine the linux.env shell script to ensure it doesn't need to be modified for your
environment, then source it. Now you should just be able to type bjam from the command line to build
the whole system (currently only GNU/Linux and gcc 3.2.x is supported). All build targets are currently
placed directories separate from the source tree. You'll have to run them from there, as there are no
install targetsinthe Jamfilesyet.

1.1 Tools

Please use a modern ANSI C++ compiler. For example, at least version 3.2.x of the GNU gcc compiler
(http://www.gnu.org/software/gcec).

For documentation use the special comments compatible with the doxygen automatic document
generation program (http://www.stack.nl/~dimitri/doxygen/). It is installed by default on most Linux
distributions. ThereisabDoxyfile intherepository. The Doxyfile issetup to use dot to generate the
graphs. You'll need to ingtall dot first. Instructions are on the doxygen page. You'll also need to adjust
the STRIP_FROM_PATH variable in the Doxyf ile to match your installation.

The boost.build system is the build system in use (which is based on jam see -
http://www.boost.org). Itisincluded in the distribution.

2 Coding convention notes

2.1 Coding Style

Thisis asummary of some of the coding conventions used to develop OpenSim. If you extend OpenSim
it would be appreciated if you adhere to these much as feasible.

Use standard ANSI C++
* Avoid Clibrary where possible (i.e. no printf, etc.)

» Usenamespaces. Don't forget to qualify standard library symbols with std:: (some compilers
also put std:: symbolsin the global namespace!)

* Usethenew #include <string> syntax (i.e not string.h)

e Don't use C defines or macros unless the benefits are really worth it over inline functions and
const values. Use O instead of NULL and base: :minimum () instead of MIN etc.
Having said that, please use the macros defined in the base header-Debugln () and
friends for printing, debug output and logging (these may be re-implemented in terms of a
better logging system in future).

* Use STL containers or derive/implement STL like containers. Don’t craft your own lists etc.
within unrelated code using next, prev pointers and the like in classes.

Variable and function/method identifiers should start with lowercase and capitalize the first letter
of each word. Please don't usethe‘_field’ convention.

Class names should capitalize the first letter of each word, including the first. For example
‘DynamicBodySystemForcer’.

Don'tuse struct. Useclass and public: instead.

Use the following bracing style:

try {
if (condition) {
doIt () ;
doItAgain() ;

else {
theOther () ;
checkIt();
}
} catch (std::exception& e) {
handleException() ;

}

Use exceptions exclusively for error handling — don't return special values or O pointers if you
can avoid it. Declare which exceptions a method throws it should be caught or when
performance is critical. If a performance critical method doesn’t throw anything use throw ()
in the prototype.

Use the const keyword everywhere that is appropriate. | know that using const can
sometimes be a pain when interpreting compiler errors, but it is better in the long run.

Never use the special value 0 (null) of pointers for a special meaning (except perhaps to mean
‘uninitialized’).

* Use the base: :ref smart pointers where possible (section 2.2.2 of the Developer Guide
documents their usage). Note the use of the NewObj macro from base: :MemoryTracer as
an dternative to new. This is optional, but will allow objects to be names and traced if the
memory tracing facility it enabled (for DEBUG builds only). This is aso the preferred way to
pass pointer arguments and return pointer values.

void afunc()

{
ref<MyReferecedObject> myRefdObject (NewObj MyReferncedObj ());
myRefdObject->myMethod () ;

}

ref<MyReferencedObj> aclonefunc (ref<const MyReferencedObj> copyFrom)
{
// no problem to call base::Cloneable::clone() on a const object.
// construct & return new smart-pointer from address of new copy
return ref<MyReferencedObj>(©From->clone());

}

afunc(); // call
// myRedObject has been deleted here, as the local went out of scope.

ref<MyReferencedObj> copy (aclonefunc (objToCopy));
copy->myMethod () ; // call myMethod on closed object

* When passing a hon-smart pointer-type argument to a method/function or storing it in a member
variable, consider using a reference. In function/method arguments, if the pointer should never
be zero, use a reference. For member variables, if the pointer needs to be provided to the
constructor, use a reference, otherwise you'll have to use a pointer. Try to adways pass and
return references to and from functions/methods, even if you just have to cast it to a pointer for
use or storage. For example:

void addForcer (const DynamicBodySystemForcer& forcer)
{ forcers.push_back (&forcer); }

2.2 Files

TODO: write.

3 GNU Free Documentation License

The OpenSim manual is released under the following license.

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any

connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opague formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following

text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"

of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opague copy, or state in or with each Opague copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the

Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified

and modification of the Modified Version to whoever possesses a copy
of it. 1In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.

You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,

unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section

may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has

standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(g) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedicationsg". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright

of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions

of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

4 Document History

Date Author Comment
05/03/03 David Jung Created initial document, version 0.1 (incomplete)
12/03/04 David Jung Additions, version 0.2 (incomplete)
19/05/04 David Jung Additions, version 0.3 (incomplete)
29/07/04 David Jung Beginnings of Guide section & other additions, version 0.4

